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1 Introduction

The Hubbard Hamiltonian,

Ĥ = −t
∑
〈jl〉σ

(
ĉ†lσ ĉjσ + ĉ†jσ ĉlσ

)
+ U

∑
l

(
n̂l↑ −

1

2

)(
n̂l↓ −

1

2

)
− µ

∑
l

n̂lσ (1)

describes the ‘hopping’ of two species of fermions, spin σ =↑, ↓, between neighboring sites 〈jl〉
of a lattice, and interacting, when on the same site l, with an energy U. Here n̂lσ = ĉ†lσ ĉlσ is
the fermion number operator and µ is the chemical potential. I am going to assume familiarity
with the basic properties of fermion creation and destruction operators ĉ†lσ and ĉlσ, including, for
example, their anticommutation relations,

{
ĉ†lσ, ĉjσ′

}
= δjlδσσ′ and

{
ĉ†lσ, ĉ

†
jσ′

}
= 0. We have

written the interaction in ‘particle-hole symmetric form’. This corresponds, up to an irrelevant
constant term in the energy, to a simple shift in the chemical potential µ from the alternate
expression U

∑
l n̂l↑n̂l↓. We will see why this is more symmetric in section 6, and the deep

implications of such symmetries in section 7.
A discussion of the Hubbard Hamiltonian is a truly immense undertaking. From a temporal
point of view it encompasses a six decade history spanning the work of Hubbard, Anderson and
Mott in the 1960’s through a host of materials to which it has been applied: transition metal
oxides, heavy fermions, cuprate superconductors, etc. [1]. Indeed, in the last 15 years a major
focus of the Atomic and Molecular (AMO) community has been on realizing and characterizing
the Hubbard model in systems of ultracold atoms [2, 3]. Attempts to solve the Hubbard model
computationally have driven a rich set of stories in inhomogeneous Hartree-Fock (magnetism
and stripe formation) [4], quantum Monte Carlo (QMC) [5] (including antiferromagnetic or-
der, d-wave superconductivity, and the ‘sign problem’), density matrix renormalization group
(DMRG) methods (stripes and superconductivity) [6], and machine learning (ML) [7]. A recent
review summarizes the breadth of these developments, applications and connections [8].
From a pedagogical point of view, then, the danger of a lecture (or even several lectures) on the
Hubbard model is the temptation to focus on sophisticated techniques and applications. The
audience can easily be left with a sense of the breadth and excitement of the field, but not with
a concrete ability to ‘do something’.
The objectives of this lecture are to provide some specific calculations which shed light on
the basic physics of the Hubbard model. We will begin with the non-interacting limit, i.e.,
obtaining the ‘band structure’ of the Hubbard model. We will emphasize that this already allows
contact with some fascinating phenomena – localization by disorder, Fermi surface nesting and
a divergence of the density of states linked to magnetism and superconductivity, and flat bands
in which the electron energy is independent of momentum.
We will also describe two very interesting aspects of the non-interacting case. First, we will
consider what happens when the motion of fermions to the left and to the right is unbalanced
(the ‘Hatano-Nelson’ model). In this case the Hamiltonian is non-Hermitian! Second, we will
relate a special choice of hoppings which can realize the surprising phenomenon of ‘perfect
quantum state transfer’.
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After discussing the U = 0 limit, and these two interesting situations, we will examine the
opposite limit when t = 0, or, more generally, the strong coupling case U � t. This will
give us insight into a fundamental feature of the Hubbard model, the ‘Mott plateau’, where the
density gets frozen at half-filling for an extended range of chemical potential, a signature of an
insulating phase arising from interactions.
The final objective is to describe the consequences of a set of canonical transformations which
can be performed on the Hubbard model. We will see these allow us to discern surprising and
not immediately intuitive physics in some parameter regimes from the more evident physics in
others. Our first illustration will be on the by now well-known connections between magnetism
in the repulsive Hubbard models and s-wave superconductivity and charge density wave forma-
tion in the attractive Hubbard model. We will then turn to a recent discovery of a transformation
which leads to a rigorous demonstration of pair density wave formation, a phase of matter which
has proven elusive to achieve both experimentally and theoretically.

2 A classical mechanics prelude

Let’s begin with a familiar, but seemingly completely unrelated problem, which will prove to
have close mathematical analogies with the non-interacting Hubbard model. Consider a one-
dimensional array of N uniform masses m connected to their neighbors by uniform springs γ.
Newton’s equations of motion for this mass-spring system are,

m
d2xl
dt2

= −γ
(
xl−xl+1

)
− γ
(
xl−xl−1

)
, (2)

where xl(t) is the displacement from equilibrium of mass l at time t. We will not boldface the
site indices when we are in one dimension. We solve this problem with the ansatz xl(t) = al e

iωt

which reduces the N coupled differential equations to N coupled algebraic equations for the
amplitudes al. After cancelling the common factor of eiωt from all the terms, we find

mω2 al = γ
(
al−al+1

)
+ γ
(
al−al−1

)
. (3)

These equations are solved by introducing normal mode coordinates labeled by k,

al = e−ikla0, (4)

yielding the normal mode frequencies,

mω2(k) = 2γ
(
1− cos(k)

)
. (5)

Here we have now used notation emphasizing that the frequency depends on the ‘momentum’ k.
(We will come back shortly to why calling k the momentum makes sense.)
Eq. (5) is an embarrassment of riches. From a collection of N linear equations (Eqs. (3)) we
have an infinite set of solutions labeled by the continuous parameter k. Something is wrong,
and it’s because we did not treat the boundary conditions carefully. Equations (3) are only true
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for the masses which have both left and right neighbors, l = 2, 3, · · ·N−1. The two masses at
the end have only a single neighbor if we adopt ‘open boundary conditions’ (obc). Here instead
we use ‘periodic boundary conditions’ (pbc), and link oscillator l = 1 to oscillator l = N with
an extra spring of potential energy 1

2
γ(x1−xN)2. Then Eqs. (3) apply to all xl, but only if we

demand that x0 ≡ xN and x1 ≡ xN+1.
This solves our problem of too many solutions, since it quantizes the previously unrestricted
allowed values of momentum by requiring eikN = 1 or, in other words, k ∈ 2π

N
{1, 2, · · · , N}.

Because cosine is periodic, it is equivalent to set

k ∈ 2π

N

{
−N

2
+1,−N

2
+2, . . . ,

N

2

}
(pbc),

which has the advantage of making k symmetric about k = 0.
It is useful to consider two special cases. When k = 0, all masses have identical displacements
al = a0. The entire chain is shifted rigidly and ω(k) = 0. This is an example of a zero
frequency ‘Goldstone mode’ associated with the translational invariance of our mass-spring
system. Because only inter-mass springs are present, there is no potential tying any mass to
a particular location in space. As a consequence the energy is invariant under a simultaneous
translation of all the masses. Put another way, the choice of origin is irrelevant, the equations
are unchanged by a constant shift of all the coordinates, xl → xl+c. On the other hand, when
k = π the masses alternate al = a0 e

iπl = a0(−1)l. This results in the largest normal mode
frequency (energy), ω2 = 4k/m. There is an interesting analogy with quantum mechanics here.
If you sketch al versus l for this highest energy mode, you see there is a node between every
mass. al wiggles as fast as possible. Similarly, in quantum mechanics we know that wiggly
wave functions are associated with high kinetic energy.
One can also solve the open boundary condition case. The ‘dispersion relation’ giving the
functional form for ω(k) is unchanged, but the N allowed momenta are shifted slightly to

k ∈ π

N+1

{
1, 2, . . . , N

}
(obc).

The pbc case is a bit more simple, so we use it here. Besides simplicity, it is also the case that
properties measured in finite length N chains with pbc are closer to the thermodynamic limit
N = ∞ than obc. Specifically, finite size corrections often go as 1/N2 with periodic and 1/N

with open boundary conditions.
A closing observation is that this solution of coupled oscillators all goes horribly wrong in the
presence of anharmonicity. Indeed, even a single anharmonic oscillator, the problem of F = ma

with V (x) = 1
2
kx2 + 1

4
ux4 is intractable. As we shall see below, the presence of interactions,

i.e., quartic terms in the fermion creation and annihilation operators, Un̂l↑n̂l↓ = Uĉ†l↑ĉl↑ĉ
†
l↓ĉl↓,

analogous to the fourth power ux4, is precisely what makes the Hubbard model impossible to
solve for U non-zero.
That’s a long time spent on classical mechanics! But we will see now that the exact same
mathematics underlies the solution of the non-interacting Hubbard model.
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3 The Hubbard model at U=0

3.1 The 1D case (linear chain)

Let’s write down the non-interacting (U = 0) Hubbard model for a 1D chain.

Ĥ = −t
∑
l

(
ĉ†l ĉl+1 + ĉ†l+1ĉl

)
− µ

∑
l

ĉ†l ĉl . (6)

Because we will not have any interactions for this section, we have suppressed the spin index σ
on the fermionic operators. That is, since U is the only thing that connects fermions with σ = ↑
to fermions with σ = ↓, when U = 0 we can just solve each spin sector independently.
Now just as we defined normal mode coordinates for the positions of our masses we can also
here define linear combinations

ĉ†k ≡
1√
N

∑
l

eikl ĉ†l (7)

and their inverse,

ĉ†l ≡
1√
N

∑
l

e−ikl ĉ†k. (8)

Note the resemblance between Eqs. (7) and (4). The fermion creation operator transformation
is, however, a little more subtle than the classical mechanics case, because we must be sure that
our new operators ĉk obey the same fermionic anti-commutation relations as the originals. It is
easy to prove this from the identities

1

N

∑
l

ei(k−k
′)l = δkk′ (9)

and

1

N

∑
k

ei(l−l
′)k = δll′ (10)

which hold for the discrete allowed momenta k, k′ ∈ 2π
N

{
−N

2
+1,−N

2
+2, · · · , N

2

}
. Equations

(9) and (10) are the discrete analogs of the familiar orthogonality relations used in Fourier
transforms.
We refer to a change of operators which preserves the commutation relations, such as Eq. (7),
as a canonical transformation. This too is analogous language to classical mechanics, where a
canonical transformation preserves the Poisson brackets. The last section of this chapter will
focus on this topic.
Plugging the transformation Eq. (8) into the Hamiltonian, Eq. (6), and making use of Eqs. (9)
and (10) yields

Ĥ =
∑
k

(
E(k)−µ

)
ĉ†kĉk (11)
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where

E(k) = −2t cos(k) . (12)

The similarity between the right-hand sides of Eqs. (5) and (12) should be evident, from the
appearance of cos(k) and the identification 2γ ↔ −µ. The energy levels of the 1D Hubbard
chain range from −2t ≤ E(k) ≤ +2t. One refers to this range as the (1D chain) ‘bandwidth’
W = 4t.
It is interesting to think about the structure on Eq. (11). The Hamiltonian does not ‘mix’ differ-
ent values of momentum k. When an electron of momentum k is destroyed, all that can happen
is that an electron with the same momentum be created. This is the analog of the classical me-
chanical principal that normal modes do not mix: A system set into oscillation in a particular
normal mode remains in that mode forever, and none of the others ever get excited.
Concerning the left-hand sides, one can wonder why the frequency/energy appears linearly in
Eq. (12) in the quantum problem, whereas it was quadratic in the coupled oscillator calculation
Eq. (5). The answer, of course, lies in the fact that Newton’s equations involve d2

dt2
, whereas the

Schrödinger equation involves only ∂
∂t

.
We have exploited the translation invariance of the oscillator system and the Hubbard Hamilto-
nian to guess (make an ansatz) to extract the normal modes/band structure. In the absence of
such symmetries the problem becomes one of diagonalizing a matrix.
Put another way, we can write the Hubbard Hamiltonian as

Ĥ =
(
ĉ†1 ĉ†2 ĉ†3 ĉ†4 ĉ†5 · · ·

)


−µ −t 0 0 0 · · ·
−t −µ −t 0 0 · · ·
0 −t −µ −t 0 · · ·
0 0 −t −µ −t · · ·
0 0 0 −t −µ · · ·
...

...
...

...
... . . .





ĉ1
ĉ2
ĉ3
ĉ4
ĉ5
...


. (13)

We happen to know (if we have some experience with tri-diagonal matrices) the eigenvalues
and eigenvectors of the matrix in Eq. (13). The eigenvalues are just the E(k) in Eq. (12), and
the matrix of eigenvectors has entries Ψkl = eikl. I have used the notation Ψ deliberately, be-
cause these eigenvectors are quite literally the familiar plane-wave solutions of the free particle
Schrödinger equation (on a discrete lattice). This justifies our referring to k as the momentum.
If we had not known this similarity transformation, we would have proceeded by diagonalizing
the matrix by calling an appropriate BLAS/LAPACK routine. While we should avoid solving
the eigenproblem numerically if an analytic solution is available, it is worth emphasizing it
is not at all a big deal. We shall see the utility of this way of thinking in terms of matrix
diagonalization when we discuss localized modes in the non-interacting Hubbard model.
Equation (12) gives the energy of a single electron, that is, the energy of the state |k〉 = c†k|vac〉.
It remains to discuss the computation of the energy with M electrons. The prescription is sim-
ple: if several electrons are present, the state | k1 k2 · · · kM 〉 = c†k1c

†
k2
· · · c†kM |vac〉 has energy
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E(k1) +E(k2) + · · ·E(kM). Of course the Pauli principle forbids any of the ki from being the
same for a given spin species.
If we are interested in the ground state of M electrons, we fill up (occupy) the states of lowest
energy. The ‘Fermi Energy’ is the highest energy that is occupied for M particles. The seem-
ingly mysterious choice of the minus sign in front of the hopping parameter tmakes momentum
k = 0 have the lowest energy, with a Fermi surface enclosing it.
Once we have the dispersion relation in hand, a very important quantity is the density of states
N(ω). In words, N(ω) dω gives the number of E(k) values which lie between ω and ω+dω.
Formally,

N(ω) ≡ 1

N

∑
k

δ
(
ω−E(k)

)
. (14)

We can easily get N(ω) in the limit N →∞ where the k values become continuous

N(ω) =
1

2π

∫ +π

−π
dk δ

(
ω+2t cos(k)

)
=

1√
4t2 − ω2

. (15)

We have used the prescription 1
N

∑
k →

1
2π

∫
dk in going from a sum over discrete values

separated by 2π/N , to an integral. N(ω) diverges at ω = ±2t where the dispersion relation
E(k) = −2t cos(k) is flat, an observation familiar from textbook discussions of band theory.

3.2 The 2D square lattice

On a 2D square lattice, the noninteracting Hubbard Hamiltonian is

Ĥ = −t
∑
lx,ly

(
ĉ†lx,ly ĉlx+1,ly

+ ĉ†lx+1,ly
ĉlx,ly + ĉ†lx,ly ĉlx,ly+1 + ĉ†lx,ly+1ĉlx,ly

)
− µ

∑
lxly

ĉ†lx,ly ĉlx,ly (16)

Although it is useful to work through the algebra for practice, the result is pretty reasonable, and
we will just quote it. The process is just to redo the steps of the previous section with l→ lx, ly.
The result is

Ĥ =
∑
kx,ky

(
E(kx, ky)−µ

)
ĉ†kx,ky ĉkx,ky (17)

where

E(kx, ky) = −2t cos(kx)− 2t cos(ky) (18)

gives the energy of an electron of momentum kx, ky. The energy levels of the Hubbard model
on a square lattice range from −4 t ≤ E(kx, ky) ≤ +4 t. The bandwidth is W = 8 t.
For many fermions, we again get the energy by just summing up the single particle levels out
to a maximum Fermi Energy. However, in d > 1 one can ask for the shape of the contour of
the boundary between the occupied and unoccupied kx, ky. This is referred to as the ‘Fermi
surface’ (FS). For small kx, ky we can expand the cosines in Eq. (18)

E(kx, ky) ∼ −4t+ t
(
k2x+k

2
y

)
(19)



3.8 Richard T. Scalettar

Fig. 1: Left: The Fermi surfaces of the Hubbard model an a square lattice with nearest neighbor
hopping for different numbers of particles (filling). They begin as circles at low density but
evolve into a rotated square at half-filling. Right: The density of states N(ω) of the Hubbard
model on a square lattice with nearest neighbor hopping. There is a divergence (‘van Hove
singularity’) of N(ω) at ω = 0 (half filling).

and see that the FS is a circle about (kx, ky) = (0, 0). Thinking in analogy with E(k) =

~2
(
k2x+k

2
y

)
/2m we see that the effective mass of the fermions m = 1/(2t) (setting ~ = 1).

In general E(k) is not quadratic and the FS does not have a circular topology (sphere in three
dimensions). Indeed, the FS’s for different fillings (number of fermions) are shown in the left
panel of Fig. 1. An interesting feature of the dispersion relation of Eq. (18) is ‘perfect nesting’.

As seen in the left panel of Fig. 1, when the interior of the FS encompasses half of the allowed
momenta (and hence the lattice is half-filled), the FS is a ‘rotated square’ and has the feature
that a single wave-vector (kx, ky) = (π, π) connects many points on the FS. The second is a
‘van Hove singularity’ in the density of states. At half-filling, N(ω=0) diverges. See the right
panel of Fig. 1.

It turns out that both of these properties make the square lattice Hubbard model particularly
prone to assuming ordered phases when the interaction U is turned on. The rough reason ap-
peals to your knowledge of second order perturbation theory, where you know the effect of a
perturbation V̂ is to shift the energyEn of eigenstate |n〉 byE(2)

n =
∑

m6=n
|〈n|V̂ |m〉|2
En−Em

. If there are
many states with Em = En the effect of V̂ will be very large. This is precisely what happens
with perfect nesting. The van-Hove singularity in N(ω) has been suggested to be implicated in
high superconducting transition temperatures. That is, thinking of the BCS formula for the crit-
ical temperature in terms of the coupling constant λ and the density of states, Tc ∼ e−1/λN(ω),
we see that a large N(ω) suggests a large Tc.

We conclude by noting that there are materials, like the cuprate superconductors, for which the
square lattice is considered appropriate: the copper atoms in the CuO2 planes reside on a square
lattice.
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4

2

13

Fig. 2: Left: The square lattice can be decomposed into two groups A and B of sites, colored
as red and green, such that the neighbors of a red site are only green and vice-versa. The
geometry is said to be ‘bipartite’. Right: The Lieb lattice is also bipartite, but note there are
twice as many red sites as green sites.

3.3 The Lieb lattice and “flat bands”

An interesting feature of the square lattice is that its sites can be divided into two sublattices
(red and green in the left panel of Fig. 2) such that the nearest neighbors of red sites are always
green and the nearest neighbors of green sites are always red. Such a geometry is said to be
‘bipartite’. This property has deep implications for the physics, most fundamentally its consis-
tency with antiferromagnetic order. In a model where the energy is minimized by neighboring
spins pointing in opposite directions, one can place the electrons so that those with up spins oc-
cupy one sublattice and those with down spins reside on the other sublattice with no frustration
(neighboring sites with high energy because their spins are in the same direction).

The honeycomb lattice describing the positions of the carbon atoms in a sheet of graphene is
also bipartite. In both the square and honeycomb cases, the numbers of red and green sites
are identical. We will next consider the Hubbard model on a Lieb lattice, shown in the right
panel of Fig. 2. Although we blitzed through going from a 1D chain to a 2D square lattice, it is
worth being a bit more careful with this one, because going to momentum space does not quite
complete the process of diagonalization.

Aside: The serious student of the Hubbard model would do well to compute E(kx, ky) for a
honeycomb geometry. This is useful ‘technical’ practice, as dealing with axes which are not
parallel to x̂ and ŷ requires some care. It is also of course important physically towards the
understanding of graphene. Just as the dispersion relation of the square lattice has interesting
properties like Fermi nesting, the honeycomb lattice hosts Dirac fermions, electrons whose
kinetic energy is linear in their momenta.

For the Lieb lattice, the repeating structure contains a three atom basis. In transforming to
momentum space we must include a ‘band’ index for the basis, in addition to momentum. The
resulting Hamiltonian is diagonal in (kx, ky) but the three basis states of given (kx, ky) mix with
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the 3×3 matrix  0 −t
(
1+eikx

)
−t
(
1+eiky

)
−t
(
1+e−ikx

)
0 0

−t
(
1+e−iky

)
0 0

 . (20)

Diagonalizing this matrix completes the process of identifying the single particle states. The
crucial and surprising feature is that one of the energy bands has E(kx, ky) = 0: The (kinetic)
energy is independent of momentum. A plot of energy versus momentum yields a horizontal
line, i.e., a ‘flat band’.
One can actually understand the origin of the zero energy states in real space. Consider the four
sites enumerated as 1, 2, 3, 4 in Fig. 2(right). Imagine a wavefunction with nonzero components
only on these four sites, and make those components all of equal magnitude, but alternating in
sign so that the entries for sites 1, 3 are positive and those for 2, 4 are negative. It is fairly easy to
see that if you apply the real space Hamiltonian matrix of Eq. (13), but generalized to hopping
on the Lieb lattice, the result is the zero vector: Because only sites 1, 2, 3, 4 have nonzero com-
ponents. hopping is possible only to the four green sites which adjoin them. However, because
of the sign alternation of the components in the original vector, there is a perfect cancellation of
the hopping. It is clear that this numbering 1, 2, 3, 4 can be performed around any of the ‘holes’
in the Lieb geometry. There is an eigenvector of zero eigenvalue for each unit cell.
The Lieb lattice is also often considered as a more refined picture of the cuprates, because the
oxygen atoms of a CuO2 sheet lie on the midpoints of the bonds of the square array of copper
atoms, just as the red circles in Fig. 2. The flat band is entirely of ‘oxygen’ origin, as the
construction above demonstrates.

3.4 Localization by disorder

Examining Eqs. (6) and (13), it is clear that disorder in the chemical potentials (making the
energy for a fermion to occupy a particular location site-dependent) can be simply incorporated
by changing the matrix elements µ → µl. The transformation Eq. (7) no longer diagonalizes
the Hamiltonian, as translation invariance is broken. However the diagonalization can still be
accomplished numerically.
A very interesting phenomenon occurs. While the plane wave eigenstates in the absence of
randomness extend throughout the lattice, the eigenstates in the presence of disorder can be
‘localized’, meaning that the components of the eigenstate are significant only on a fraction of
the sites and exponentially small elsewhere.
Figure 3 shows the square of the ground state wavefunction for a 1D chain of N = 1024 sites
for different ranges ∆ of the random chemical potential (site energy) −∆/2 < µl < +∆/2 and
no interactions (U = 0). Wave functions have been shifted so that their maximum amplitude
is at the lattice center x = N/2 = 512. In 1D all wavefunctions fall off exponentially for
an arbitrarily small ∆. The same is true in 2D, though it was a very challenging assertion to
prove [9]. In 3D, the eigenstates near the center of the DOS are delocalized, and those at the
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Fig. 3: Left: Square of amplitude of the ground state wavefunction for a disordered 1D chain. As
the disorder amplitude ∆ decreases, the wavefunction is increasingly spread out, but it remains
localized for any nonzero ∆. Right: Same data but blown up near the lattice center. Note the
logarithmic scale on the vertical axes.

edges (high and low energies) are localized. The energy separating these cases is referred to as
the ‘mobility edge.’ Detailed numerical work is reviewed in [10].
Here one can continue the analogy with classical systems. A beautiful discussion of Maradudin
describes localization about a single defect mass in a 1D mass-spring chain [11].
There is a lot to unpack in the comments above, and indeed there was a long effort to understand
the nature of localization in two dimensions. Indeed, a major theme of condensed matter physics
for nearly three decades concerned whether non-zeroU could result in delocalization in 2D [12].
But the main message for us here is that many aspects of this deep and beautiful chapter of
condensed matter physics conform to the title of this chapter: From a computational perspective
they boil down to the very familiar and simple question of diagonalizing a matrix!

4 The Hatano-Nelson model

A recently emerging area of interest concerns non-Hermitian Hamiltonians [13–15]. The simple
methods we have introduced give us a foothold into this field as well. For concreteness, let’s
consider the ‘Hatano-Nelson Hamiltonian’ in one dimension

Ĥ = −t
L∑
l=1

(
eh ĉ†l+1ĉl + e−h ĉ†l ĉl+1

)
+
∑
l

µl ĉ
†
l ĉl . (21)

which is obtained from the Hubbard model of Eq. (6) by introducing a hopping which is dif-
ferent for fermions moving to the left and to the right. The parameter h controls the degree
of anisotropy in the hopping, and µl are random site energies. Periodic boundary conditions
connect sites 1 and L.
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Fig. 4: Eigenvalues of the Hatano-Nelson Hamiltonian for an N = 1024 site chain. The
random chemical potentials are chosen from a box distribution −∆ < µl < +∆. Four disorder
realizations are shown in each figure. As the disorder ∆ increases at fixed h, the real ‘wings’
become longer. As h increases at fixed ∆, the imaginary part of the eigenvalues grows.

In the case where there is no disorder, µl = 0, we can try the same canonical transformation as
Eq. (7), which leads to eigenvalues then having the form

E(k) = −t
(
e−h−ik + eh+ik

)
= −2t

(
cosh(h) cos(k) + i sinh(h) sin(k)

)
. (22)

As k varies from 0 to 2π (in steps of 1/L) this describes an ellipse centered at the origin of
the complex plane. The length of the ellipse along the real axis is 4t cosh(h) and along the
imaginary axis, 4t sinh(h). The periodic boundary conditions are crucial. Without them one can
do a ‘gauge transformation’, or in more elementary language a redefinition of the eigenvectors,
which makes h disappear from the problem: ṽl = e−hlvl. Then the matrix is Hermitian, with all
real eigenvalues.
As remarked earlier, in the presence of disorder the transformation of Eq. (7) no longer works.
Instead one simply diagonalizes the matrix,

H =


µ1 −t eh 0 0 0 · · · −t e−h

−t e−h µ2 −t eh 0 0 · · · 0

0 −t e−h µ3 −t eh 0 · · · 0
...

...
...

... . . .
−t eh 0 0 0 0 −t e−h µL

 . (23)
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When disorder is present, the original elliptical distribution in the complex plane develops
‘wings’ extending out along the real axis, see Fig. 4. The eigenvectors associated with the
real eigenvalues on the wings are localized, and the eigenvectors with complex eigenvalues (the
central ellipse) are extended. The plausibility argument for this assertion is that one can accu-
mulate the h factors on any desired link (or set of links) through the gauge transformation noted
above. For a localized eigenvector one can move all the h factors to a lattice location where
the wave function is arbitrarily (exponentially) small. So those eigenvectors are governed by a
piece of H which can be made Hermitian in the only part of the lattice that matters to them.
Thus, they will have real eigenvalues. This doesn’t work for extended eigenvectors, so they
have complex eigenvalues.
The numerical results of Fig. 4 reveal some interesting general features of computational work
on Hubbard models (and even more generally). Except for h = 0.3, ∆ = 4.0,N = 1024 is large
enough that the results are ‘self-averaging’: The eigenspectra for different disorder realizations
largely coincide. However, when h is small and the disorder is large enough, one begins to see
significant variation from realization to realization (lower left panel of Fig. 4. The N = 1024

dimensional matrices can be diagonalized in about half a minute using the LAPACK routine
dgeevx. Diagonalization scales as N3 so N = 4096 would only take about a half-hour.

5 Perfect quantum state transfer

One of the most familiar and prominent aspects of quantum mechanics is the uncertainty princi-
ple. Our knowledge of the position and momentum of a quantum mechanical particle must obey
∆x∆p ≥ ~/2. Moreover, we expect uncertainties in position to grow in time (‘spreading of
the wave packet’). Consider a particle moving in d=1 with no potential V (x)=0. Contrast the
motion of the ‘slowest’ part of the wave-packet at x−∆x moving with momentum p−∆p, and
the ‘fastest’ part of the wave-packet at x+∆x moving with momentum p+∆p. The separation
of the extremes grows as 2(∆x+t∆p). This provides a very crude picture for spreading, but
this linear growth of uncertainty with time is not correct. Instead, ∆x ∼

√
t as can be seen by

explicitly solving the free particle Schrödinger equation, or else simply by noting its similarity
to the classical diffusion equation.
It is therefore remarkable that we can construct Hubbard models which exhibit ‘perfect quantum
state transfer’ (QST). That is, a wavefunction perfectly localized at one end of a d = 1 chain
will, at later times, be perfectly localized at the opposite end! Although spreading does occur at
intermediate times, the wave function somehow re-coalesces to have zero position uncertainty.
How is this (quantum mechanically) counter-intuitive result realized? We know that each eigen-
state |φn〉 of a quantum mechanical system evolves with a frequency ωn=En/~, where En is
its energy. A generic (localized) wave function will be a linear combination of the |φn〉 and it
seems plausible that to get a different localized wavefunction at later time, the frequencies ωn
must somehow be such that the maxima of the different waves can come into alignment. An
obvious way that could happen is if the ωn were equally spaced. We are thus led to think about
whether we can find a tridiagonal matrix whose eigenvalues have constant separation. Uniform
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Fig. 5: (a,b): Perfect quan-
tum state transfer has been
achieved experimentally in a
collection of superconducting
qubits with tunable couplings
adjusted according to the pre-
scription described in the text
for a N=6 site chain. The
system starts with qubit Q=1
excited, and the excitation is
transferred to the other end of
the chain Q=6 at a time t =
π/(2J) later. (c): A picture of
the time evolution from the an-
gular momentum perspective.
Image taken from [16].

hoppings tl,l+1 = t will not work, since the resulting eigenvalues are E(k)=−2t cos(k).
A clever thought is this: The components of angular momentum operators have equally spaced
levels. Consider 2 Ŝx = Ŝ++Ŝ− whose action on an eigenstate |jm〉 of Ŝ2 and Ŝz is 2 Ŝx|j,m〉 =√
j(j+1)−m(m+1)|j,m+1〉+

√
j(j+1)−m(m−1)|j,m−1〉. Taking j = 5/2, there are six

states with eigenvalues 2m~ =
{
−5,−3,−1,+1,+3,+5

}
~. Using the expression above, the

state |j,m〉 is connected to its neighbors |j,m+1〉 and |j,m−1〉 with coefficients
√
5,
√
8,
√
9,√

8,
√
5. (We have now set ~ = 1.)

We also know the time evolution. A spin starting with z component of angular momentum
m = +5/2, under the influence of Ĥ = 2J Ŝx will rotate to m = −5/2 in a time t = π/(2J).
A picture of this is provided in panel (c) of Fig. 5.
We now note that this mathematical structure of an operator connecting adjacent states (a tridi-
agonal matrix) is precisely that of the near-neighbor Hubbard kinetic energy operator in 1D.
Translating the angular momentum formalism to this language, we see that if we had a six site
chain with Ĥ = −

∑
l tl,l+1

(
ĉ†l+1ĉl+ĉ

†
l ĉl+1

)
and t1,2 =

√
5J, t2,3 =

√
8J, t3,4 =

√
9J, t4,5 =√

8J, and t5,6 =
√
5J , the eigenenergies would be {−5,−3,−1,+1,+3,+5} J . The time evo-

lution would be such that an electron beginning with
∣∣ψ(t=0)

〉
= ĉ†1 |vac〉 will evolve perfectly

into
∣∣ψ(t=π/(2J))〉 = ĉ†6 |vac〉.

We have thus constructed a hopping Hamiltonian which exhibits perfect Quantum State Trans-
fer. The general rule for a chain of arbitrary length N is tl,l+1 =

√
l(N−l) [17]. This prescrip-

tion was first noted by Christandl [18] and later generalized by Kay [19].
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Fig. 6: Left: The density ρ as a function of chemical potential for a single site with U = 4. As
the temperature T is lowered, a Mott plateau develops. Center: The local moment 〈m̂2〉 as a
function of U at fixed temperature T = 2. Right: The local moment 〈m̂2〉 as a function of T
at fixed temperature U = 4. Local moments develop as either T is reduced or U is increased.
Chemical potential µ = 0 in the middle and right panels, so the site is half-filled.

6 The strong coupling limit

We invested a lot of time on the non-interacting Hubbard model. It was time well-spent, since
we saw there is a lot of very interesting physics, from nesting, to localization, to perfect Quan-
tum State Transfer. But, of course we should not be satisfied with this U = 0 limit. In this
section, we will consider the opposite extreme of strong coupling, t = 0, for which the Hubbard
model becomes a collection of single sites

Ĥ = U
∑
j

(
n̂j↑ −

1

2

)(
n̂j↓ −

1

2

)
− µ

∑
j

(
n̂j↑ + n̂j↓

)
(24)

which can be considered independently.
Each site has four possible configurations: empty, having a single electron (either spin up or spin
down) or doubly occupied. The states |0〉, | ↑ 〉, | ↓ 〉, | ↑↓ 〉 are eigenstates of Ĥ with eigenvalues
+U/4, −µ−U/4, −µ−U/4, +U/4−2µ respectively. At this point we can see the meaning of
the interaction term being ‘particle-hole symmetric’: the contribution of the interaction term in
Eq. (24) to the state |0〉 with two holes is identical to that of the state with two particles | ↑↓ 〉.
An important consequence of this convention is that half-filling conveniently occurs always at
µ = 0 for any value of temperature T and interaction strength U. Indeed, if we are on a bipartite
lattice, this is true even if the hopping t is non-zero, as we shall see in the subsequent section.
The t = 0 partition function then consists of a term

Z =
∑
α

〈
α
∣∣e−βĤ∣∣α〉 = e−βU/4 + 2eβµ+βU/4 + e2βµ−βU/4, (25)

for every site of the lattice. The energy per site is,

E = Z−1
∑
α

〈
α
∣∣Ĥe−βĤ∣∣α〉 = 1

Z

(
U

4
e−βU/4 + 2

(
−U

4
−µ
)
eβµ+βU/4 +

(U
4
−2µ

)
e2βµ−βU/4

)
.

(26)
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Meanwhile, the occupation is

ρ = 〈n̂〉 = Z−1
∑
α

〈
α
∣∣ n̂e−βĤ∣∣α〉 = 1

Z

(
2eβµ+βU/4 + 2e2βµ−βU/4

)
. (27)

A plot of the density ρ versus chemical potential µ, Fig. 6 (left), exhibits one of the most fun-
damental features of the Hubbard model, namely the “Mott insulating gap”. As µ increases the
density increases, but, at sufficiently low temperature, gets stuck at half-filling, ρ=1, for a range
−U/2<µ<+U/2. This jump in µ reflects the fact that once there is one electron on the site, the
cost to add a second electron requires an additional energy cost U. It is important to emphasize
that this is an entirely different type of gap than that which occurs in a band insulator when a
band is completely filled with two electrons per state and there is a range of energy in which
there are no states before the bottom of the next band begins. The Mott gap occurs for an odd
number of electrons per site, a situation which band theory would insist on resulting in a metal.
In addition to the Mott insulating gap, one of the central features of the Hubbard model is the
presence of magnetism. As noted earlier, the energy of the empty and doubly occupied states is
+U/4, while that of the singly occupied states is−U/4. Thus the formation of ‘local moments’
(sites with non-zero spin) is energetically favored. The local moment 〈m̂2〉 =

〈
(n̂↑−n̂↓)2

〉
is a good measure of this tendency: it takes on the value 0 for empty and doubly occupied
sites and is 1 for single occupation. Plots of 〈m̂2〉 versus U at fixed temperature T and versus
temperature T at fixed U are shown in 6 (center) and 6 (right) respectively. Large U and low
T result in perfect moment formation 〈m̂2〉 → 1. A nonzero hopping t introduces additional
quantum fluctuations. For finite U, 〈m̂2〉 will not go to 1 even at T = 0.
Moment formation, such as we are observing in the single site limit, is a pre-requisite for mag-
netism, but one also needs the magnetic moments on different sites to align (ferromagnetism) or
antialign (anti-ferromagnetism) to speak of long range order. The physical picture for antiferro-
magnetism is that electrons on neighboring sites with spins which are antiparallel can hop onto
each other, resulting in a second order lowering of energy proportional to t2/U. This hopping is
forbidden for electrons of parallel spin. Hence antiferromagnetism is favored. Ferromagnetism
can also occur in the Hubbard model, but is much harder to achieve (in the single band case we
are considering here). It is not too difficult to do a mean field calculation, and this will reveal
magnetic behavior. However, we will not describe that here. Instead, we will note that one
can easily compute the Green function in the t=0 limit (and also, actually, in the U=0 limit).
Much of the initial progress in many-body physics rested upon diagrammatic perturbation the-
ory, where the central quantity is the Green function. Understanding that technology is a long
slog, so it is pleasant to be able to do a simple calculation of this somewhat mysterious object.
Consider

G↑(τ) ≡
〈
ĉ↑(τ)ĉ

†
↑(0)
〉

in this single-site limit. Only two of the states, those with the up spin occupied, contribute. For
simplicity we will focus on the case µ = 0. It is straightforward to show that,

G↑(τ) =
e+βU/4e−τU/2 + e−βU/4eτU/2

2 eβU/4 + 2 e−βU/4
.
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The Green’s function is related to the spectral density A(ω) by the relation,

G(τ) =

∫ +∞

−∞
A(ω)

e−ωτ

e−βω + 1
dω .

If you plug in

A(ω) =
1

2

(
δ
(
ω−U

2

)
+ δ
(
ω+

U

2

))
and do the integral you get precisely the G↑(τ) we computed. The spectral function of the t = 0

Hubbard model consists of two delta function peaks separated by U. A(ω) is the many-body
counterpart of the single particle density of states in the non-interacting limit. The separation
of the peaks in A(ω) by U is then akin to a band gap which would occur in N(ω), and is thus
sensibly referred to as the Mott gap.

7 Particle-hole transformations

Our final topic focuses on the implications of certain canonical transformations on the low
temperature properties of the Hubbard model and its generalizations. We will assume here a
familiarity with the ground state phase diagram of the repulsive Hubbard model, especially that
it exhibits long range AF order at half-filling with the long range spin ordering being degenerate
along any of Sx, Sy or Sz directions (Heisenberg universality class).
Let us begin by considering a ‘partial’ particle-hole transformation (PHT),

ĉj↓ → (−1)j ĉ†j↓ (28)

in which only the down spin operators are affected. In writing Eq. (28) we assume we are
on a bipartite lattice (see Sec. 3.3) so that the symbol (−1)j takes on the value +1 for j ∈ A
and −1 of j ∈ B. Under this transformation, the kinetic energy remains unchanged because,
although it interchanges the order of the creation and destruction operators in the hopping, that
reversal can be undone by invoking the anticommutation relations. The resulting minus sign is
precisely canceled by the signs from the (−1)j terms, as long as only near neighbor hopping
occurs (so that one site is in A and the other is in B). What does the PHT do to the potential
energy? The down spin density n̂j↓ ↔ 1−n̂j↓ and, as a consequence the sign of U is reversed,
mapping attraction to repulsion and vice-versa. Notice that writing the interaction in particle-
hole symmetric form makes this observation especially easy to discern.
Finally, consider the chemical potential term. As noted immediately above, the down spin den-
sity (but not the up spin density) picks up a minus sign. The roles of charge and spin operators
are interchanged n̂j↑+n̂j↓ ↔ n̂j↑n̂j↓. Thus the chemical potential term in Ĥ, −µ(n̂j↑+n̂j↓),
becomes −µ(n̂j↑−n̂j↓) which is a Zeeman energy. Thus, µ↔ Bz under this PHT.
To see how useful this mapping is, let’s look at how physical observables are transformed.
We note that because Eq. (28) applies only to the down spin operators, correlations of the Z
component of spin map onto density correlations. On the other hand, the XY spin operators
map onto s-wave pairing ĉ†j↑ ĉj↓ ↔ ĉ†j↑ ĉ

†
j↓.
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With those mappings in place, the connections between the attractive and repulsive Hubbard
models become clear. The fact that the square lattice repulsive Hubbard model has degenerate
Z and XY antiferromagnetic spin order in its ground state at half-filling immediately implies
the degeneracy of charge density wave and superconducting correlations in the attractive case.
This is not at all an obvious thing if we just thought about the attractive model in isolation.
But there is even more to glean here: In a repulsive Hubbard model with antiferromagnetic
order, a Zeeman field Bz causes AF Heisenberg spins to ‘lie down’ and order in the XY plane,
perpendicular to the field. This is so because spins in the XY plane can tilt upwards into the
Z direction and lower their energy linearly in the out of plane angle, whereas the disruption to
the AF results in an energy cost which is quadratic in the angle. If the AF order were in the Z
direction, tilting the spins would pick up only a quadratic field energy. The key observation is
then to note that when we do the PHT such a Zeeman term in the +U model becomes a chemical
potential in the−U model. The doped attractive Hubbard model is thus seen to have a tendency
for s-wave superconducting order. Indeed, because the field in the z direction reduces the
universality class from Heisenberg to XY, the transition to s-wave SC order can occur at finite
temperature. This mapping and its consequences for conventional superconductivity have been
known for nearly four decades. We will now show how an alternate canonical transformation
lends similar insight into exotic superconductivity, something only realized recently [20].
To see this, let’s consider a canonical transformation,

ĉj↓ → (−1)j ĉj↓ (29)

which is similar to that of Eq. (28) in having the staggered phase factor (−1)j, and acting only
on the down spins, but lacks the transformation from particle to holes. Applying this to the
attractive Hubbard model results in

Ĥσz = −t
∑
〈ij〉

∑
αβ

ĉ†iα σ
αβ
z ĉjβ − µ

∑
i,α

n̂iα + U
∑
i

(
n̂i↑−

1

2

)(
n̂i↓−

1

2

)
(30)

The Pauli matrix σz has spin indices α, β and results in hopping amplitudes for the spin-up and
spin-down fermions differing in sign.
We can now infer the properties of this ‘σz Hubbard model’ from those of the attractive Hubbard
model. While the CDW correlations map into themselves, the s-wave SC phase is altered.
Specifically, the on-site pairing transforms as ∆j = cj↓cj↑ → ∆j = (−1)jcj↓cj↑. Therefore, the
pairing remains on-site but with an alternating sign, indicating that the system displays s-wave
pair density wave (PDW) superconductivity: The pairing function can be written as

∆† =
1√
N

∑
j

(−1)j c†j↑c
†
j↓ =

1√
N

∑
k

c†k↑c
†
−k+K0↓

with K0 = (±π,±π). Since we know the attractive Hubbard model has s-wave pairing, the σz
Hubbard model must necessarily have a low temperature s-wave (singlet) PDW phase, in which
an electron at momentum k pairs up with another at momentum −k+K0, resulting in a Cooper
pair carrying non-zero momentum.
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An analogous mapping of the magnetism in the repulsive Hubbard model shows that the repul-
sive σz Hubbard model has a d-wave (triplet) PDW low temperature phase. These observations
are quite remarkable. A PHT transformation, combined with the known phase diagram of the
conventional Hubbard model, has revealed a microscopic model, the σz Hubbard model, which
rigorously possesses pairing with non-zero momentum.

8 Concluding remarks

The Hubbard model was developed to explain some most fundamental many-body phenomena
in condensed matter physics: the mysterious Mott insulating behavior and magnetism in tran-
sition metal oxides. Several decades later, it emerged as one of the leading theories of d-wave
superconductivity in the cuprates, and appears to hold insight into related stripe formation. Af-
ter two further decades the Hubbard model re-invented itself yet again in AMO community.
One might think such a powerful theory would also be inaccessible. We hope these notes have
proven that is not the case. We also hope that they suggest the Hubbard model is not yet fin-
ished having something to say about new condensed matter problems, including non-Hermitian
physics, quantum state transfer, and pair density wave phases.
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