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Why study doped Mott insulators?
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Mott insulators
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The simplest model to describe Mott insulators is the Hubbard model

H = Â
i,j

Â
s

tij c
†
i,sc

j,s + U Â
i

ni," ni,#

= Â
k,s

ek c
†
k,sc

k,s + U Â
i

ni," ni,#

ek = Â
j

tij e
ik·(Rj�Ri )

We consider this model on a 2D square lattice with N sites

We denote the number of electrons with spin s by Ns and Ne = N" + N#

Densities are denoted by n, for example ne = Ne/N



Reminder concerning band filling
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The number of k-points in the Brillouin zone always is equal to the number

of unit cells - in our case N

One k-point can take up two electrons - spin-" and spin-#

Ne = N means that the lowest N/2 k-points contain two electrons each

- the band is half-filled

Ne = 2N means that every k-point contains two electrons

- the band is completely filled



The Hubbard-I approximation
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Consider the Hubbard model at half-filling, N" = N# = N/2 ! Ne = N

Set U/t = • ! GS has one electron/site and is highly degenerate

ndeg =

✓
N

N/2

◆

Despite this we assume that there is a unique ‘spin background’ |Y0i

|Y0i has one electron/site

Main assumption: |Y0i is ‘disordered’

Now let U/t < • but still t ⌧ U ! charge fluctuations



Now interpret the charge fluctuations as ‘particles’
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Describe these ‘particles’ by a Hamiltonian

H = Â
i,j

Â
s

ti,j

2

⇣
d

†
i,s h

†
j,�s + H.c.

⌘
+Â

i,j
Â
s

ti,j

2

⇣
d

†
i,s d

j,s � h
†
i,�s h

j,�s

⌘

+U Â
i,s

d
†
i,sd

i,s



Recall ...
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H = Â
i,j

Â
s

ti,j

2

⇣
d

†
i,s h

†
j,�s + H.c.

⌘
+Â

i,j
Â
s

ti,j

2

⇣
d

†
i,s d

j,s � h
†
i,�s h

j,�s

⌘

+U Â
i,s

d
†
i,sd

i,sFourier transform:

H = Â
k,s

ek

2

⇣
d

†
k,s h

†
�k,�s + H.c.

⌘
+ Â

k,s

⇣
(

ek

2
+ U) d

†
k,s d

k,s � ek

2
h

†
k,s h

k,s

⌘

This quadratic form can be solved by unitary transformation

g†
k,+,s = uk d

†
k,s + vk h�k,�s

g†
k,�,s = �vk d

†
k,s + uk h�k,�s

Demanding [H,g†
k,a,s] = Ek,a g†

k,a,s gives uk and vk and the two Hubbard bands

Ek,± =
1
2

✓
ek + U ±

q
e2

k
+ U2

◆
U/t!•�!

8
<

:

ek

2 + U

ek

2



Electron count
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We need to determine the electron number Ne - recall:

The vacuum |Y0i has one electron/site ! Ne = N

A double occupancy d†
i,s increases Ne by 1, a hole h†

i,�s decreases Ne by 1

Ne = N + Â
i,s

⇣
d

†
i,sd

i,s � h
†
i,sh

i,s

⌘



Electron count
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We had Ne = Â
i,s

⇣
d

†
i,sd

i,s � h
†
i,sh

i,s

⌘
+ N

= Â
k,s

⇣
d

†
k,sd

k,s � h
†
�k,�sh�k,�s

⌘
+ N

= Â
k,s

⇣
d

†
k,sd

k,s + h�k,�sh
†
�k,�s

⌘
� N

= Â
k,a,s

g†
k,a,sg

k,a,s � N

For Ne = N this means h Â
k,a,s

g†
k,a,sg

k,a,s i = 2N

The lower band is completely filled, the upper completely empty - Mott insulator

For Ne = N(1 � d) �dh Â
k,a,s

g†
k,a,sg

k,a,s i = N(2 � d)

The lower band has a hole-like Fermi surface with volume d
2 VBZ



Ne = N(1 � d) ! ne = 1 � d)
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Ek,± =
1
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✓
ek + U ±

q
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k
+ U2

◆
U/t!•�!
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Fermi surface volume versus doping
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For ne ! 0 we expect free electron behaviour

This may imply a phase transition

At ne ⇡ 0.25 every electron has an empty site next to it ! phase transition



Comparison with Quantum Monte Carlo
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A(k,w) obtained by QMC

on an 8 ⇥ 8 cluster U/t = 8, ne = 1

C. Gröber et al, PRB 62, 4336 (2000)

kBT = 4t , t , 0.33 t , 0.1t (top to bottom)



Fermi surface volume versus ne, kBT = 4t
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Caveat
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We have represented holes and double occupancies as spinfull particles:

H = Â
i,j

Â
s

ti,j

2

⇣
d

†
i,s h

†
j,�s + H.c.

⌘
+Â

i,j
Â
s

ti,j
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⇣
d

†
i,s d

j,s � h
†
i,�s h

j,�s

⌘

+U Â
i,s

d
†
i,sd

i,s

But a hole and a double occupancy are spinless objects ?

|Y0i has definite Sz ! ci,"|Y0i and ci,#|Y0i are orthogonal

This is despite the hole at i is spinless ! information about ‘spin of missing
electron’ is ‘stored elsewhere’

The spin-information may ‘stay with the hole’ or ‘go its own way’

The first scenario would be a Fermi liquid of spin- 1
2 quasiparticles - the second

one is called spin charge separation



We have seen that ...
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In a the Hubbard model for large U/t the strong Coulomb repulsion between
electrons invalidates the band-description

Rather, for electron density ne = 1 the ground state may be viewed as a dilute
gas of hole-like and double-occupancy-like charge fluctuations populating a
‘spin background’ with one electron/site

The electron occupation of each site is close to 1 ! each site carries a
nonvanishing spin

We have elegantly bypassed this problem by assuming an unspecified
‘disordered spin background’ |Y0i

Let us now discuss what the spins are really doing



Kinetic spin exchange in Mott insulators
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We consider a Hubbard dimer with N" = N# = 1

H = �t Â
s

⇣
c

†
1,sc2,s + c

†
2,sc1,s

⌘
+ U

2

Â
i=1

ni,"ni,#

This is equivalent to a fictitious particle living on a 2 ⇥ 2 plaquette

1,c 1,c c2, 1,c

1,c 2,c c2, 2,c

U

U

−t

−t
−t

−t



Kinetic spin exchange in Mott insulators
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1,c 1,c c2, 1,c

1,c 2,c c2, 2,c

U

U

−t

−t
−t

−t

Eigenstates can be classified by their parity under reflection by the diagonal

|f±i =
1p
2

⇣
c

†
1,"c

†
2,# ± c

†
2,"c

†
1,#

⌘
|0i = 1p

2

⇣
c

†
1,"c

†
2,# ⌥ c

†
1,#c

†
2,"

⌘
|0i

|f+i is singlet (S=0), |f�i is triplet (S=1)

|f�i has zero amplitude on the diagonal ! E(S = 1) = 0

|f+i can ‘tunnel’ through the barrier ! E(S = 0) = �C
t2

U

Detailed calculation shows C = 4 ! E(S = 0) = � 4t2

U
= �J



Kinetic spin exchange in Mott insulators
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We found for two electrons in the dimer:

E(S = 1) = 0

E(S = 0) = �4t2

U
= �J

We want to find an ‘effective Hamiltonian’ which reproduces this level scheme

S(S + 1) = (S1 + S2)
2 = S

2
1 + 2S1 · S2 + S

2
2

=
3
4

+ 2S1 · S2 +
3
4

! S1 · S2 =
1
2

✓
S(S + 1)� 3

2

◆
=

(
� 3

4 S = 0

� 1
4 S = 1

Therefore we can summarize the energy levels of the dimer by

Heff = J

✓
S1 · S2 �

1
4

◆



Kinetic spin exchange in Mott insulators
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We generalize this to the lattice by using this Heff for every nearest-neighbor
bond - this is the Heisenberg antiferromagnet

H = J Â
hi,ji

Si · Sj

= J Â
hi,ji

⇣
S

x

i
S

x

j
+ S

y

i
S

y

j
+ S

z

i
S

s

j

⌘

= J Â
hi,ji

✓
1
2

⇣
S
+
i

S
�
j
+ S

�
i

S
+
j

⌘
+ S

z

i
S

z

j

◆
.

J = 4t2

U
> 0 and we have introduced the spin-raising and -lowering operators

S+ = Sx + iSy

S� = Sx � iSy
)

Sx = 1
2 (S

+ + S�)

Sy = 1
2 (S

� � S+)



The 2d Heisenberg antiferromagnet
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We consider a 2d square lattice with exchange only between nearest neighbors

H = J Â
hi,ji

✓
1
2

⇣
S
+
i

S
�
j
+ S

�
i

S
+
j

⌘
+ S

z

i
S

z

j

◆

If only the term µ J Sz

i
Sz

j
were present the ground state is the Néel state



The 2d Heisenberg antiferromagnet
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We consider a 2d square lattice with exchange only between nearest neighbors

H = J Â
hi,ji

✓
1
2

⇣
S
+
i

S
�
j
+ S

�
i

S
+
j

⌘
+ S

z

i
S

z

j

◆

If only the term µ J Sz

i
Sz

j
were present the ground state is the Néel state

i j

The Néel state is not an eigenstate of the full Hamiltonian because the term

µ S
+
i

S
�
j
+ S

�
i

S
+
j

produces quantum fluctuations



Linear spin wave theory
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More on quantum fluctuations:

i j
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Linear spin wave theory
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More on quantum fluctuations:

i j

There are two possible outcomes

The quantum fluctuations could completely destroy the antiferromagnetic order
and a qualitatively new state may ensue

Or an equilibrium concentrations of inverted spins may be reached and we
have an antiferromagnet hosting a gas of magnons

In one dimension the ground state is disordered in two dimensions or higher
the antiferromagnetic order survives ! we ‘expand around the Néel state’



Linear spin wave theory
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i j i j

Consider the Néel state as vacuum |0i

Represent a #-spin at site i on the "-sublattice as a Boson created by a†
i

Represent a "-spin at site j on the #-sublattice as a Boson created by b†
j



Linear spin wave theory
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Linear spin wave theory
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i j i j

Consider the Néel state as vacuum |0i

Represent a #-spin at site i on the "-sublattice as a Boson created by a†
i

Represent a "-spin at site j on the #-sublattice as a Boson created by b†
j

Why Bosons? - Spin operators on different sites commute!

States like (a†
i
)2|0i are meaningless

Additional constraint: at most one Boson/site - ‘hard core constraint’



Hamiltonian for spin fluctuations
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Represent a #-spin at site i on the "-sublattice as a Boson created by a†
i

Represent a "-spin at site j on the #-sublattice as a Boson created by b†
j

J Â
hi,ji

1
2

⇣
S
�
i

S
+
j
+ S

+
i

S
�
j

⌘
=

J

2 Â
i2"�SL

Â
j2N(i)

⇣
S
�
i

S
+
j
+ S

�
j

S
+
i

⌘

=
J

2 Â
i2"�SL

Â
j2N(i)

⇣
a

†
i

b
†
j
+ b

j
a

i

⌘



Hamiltonian for spin fluctuations
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Hamiltonian for spin fluctuations
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i

If one spin is inverted z = 4 bonds switch from (", #) to (#, #)

J Sz

i
Sz

j
changes from � J

4 to J

4 for these bonds

The total increase in energy is zJ

2

We interpret this as the energy of the boson

J Â
hi,ji

S
z

i
S

z

j
= ENeel +

zJ

2

 

Â
i2A

a
†
i
a

i
+ Â

j2B

b
†
j
b

j

!



Hamiltonian for spin fluctuations
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Collecting everything we find the spin wave Hamiltonian

HSW =
zJ

2

 

Â
i2A

a
†
i

a
i
+ Â

i2B

b
†
i

b
i

!
+

J

2 Â
i2A

Â
n

⇣
a

†
i

b
†
i+n

+ b
i+n

a
i

⌘
.

We switch to Fourier transformed operators ...

a
†
k
=

r
2
N

Â
j2A

e
ik·Rj a

†
j

b
†
k
=

r
2
N

Â
j2B

e
ik·Rj b

†
j

... and find

HSW =
zJ

2 Â
k2AFBZ

⇣
a

†
k
a

k
+ b

†
k
b

k
+ gk (a†

k
b

†
�k

+ b�k
a

k
)
⌘
,

gk =
1
z

Â
n

e
ik·n =

1
4
(2 cos(kx ) + 2 cos(ky )) .



Solving the Hamiltonian
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HSW =
zJ

2 Â
k2AFBZ

⇣
a

†
k
a

k
+ b

†
k
b

k
+ gk (a†

k
b

†
�k

+ b�k
a

k
)
⌘

HSW can be diagonalized by a Bosonic Bogoliubov transformation

We define new Bosonic operators a†
k

and b†
k

by ...

a†
k

= uk a
†
k
+ vk b�k

b†
�k

= uk b
†
�k

+ vk a
k

... and demand that they obey Bosonic commutation rules and diagonalize HSW

h
a

k
, a†

k0

i
=
h

b
k
, b†

k0

i
= dk,k0

h
HSW , a†

k

i
= wk a†

k

This gives (see notes) uk, vk and wk = zJ

2

q
1 � g2

k



Spin waves
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Recall wk =
zJ

2

q
1 � g2

k

Band width: 2J

gk =
1
4
( 2 cos(kx ) + 2 cos(ky ) )

k!0�! 1 � 1
4
( k

2
x + k

2
y ) + . . .

wk

k!0�! J

p
2 |k|

 0
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 1

 1.5

 2

ω
k/

J

(0,0) (π,π) (π,0) (0,0)



Spin waves in experiment

29

KIT

Result of inelastic neutron scattering experiments on La2CuO4
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Taken from Coldea et al. PRL 86, 5377
(2001)



We have seen that ...
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In a Mott-insulator electrons are localized ! spin- 1
2 at each site

The spins ‘communicate’ by hopping ! Heisenberg Hamiltonian

In d � 2 this results in antiferromagnetic order

Spins which are inverted relative to the order aquire the nature of propagating

Bosonic excitations: spin waves

Doped holes have to move through this ‘spin environment’

This will modify their motion - which is what we will discuss next



Doped Mott insulators
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To describe the doped Mott insulator we have to upgrade the

Heisenberg antiferromagnet and add some mobile vacancies

This is described by the famous t-J model

Ht�J = �t Â
hi,ji

Â
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⇣
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The Hubbard operator ĉ†
i,s = c†

i,s(1 � ni,s̄) creates an electron only on empty sites
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Doped Mott insulators
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The t-J model

Ht�J = �t Â
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It was derived by Chao, Spałek and Oleś as the strong coupling limit of the
Hubbard model, J. Phys. C10, L 271 (1977)

It was shown to describe the CuO2-planes in copper oxide superconductors by
Zhang and Rice, Phys. Rev. B 37, 3759 (1988)

Parameter values to describe the CuO2 planes of copper oxide
superconductors are t ⇡ 350meV and J ⇡ 140meV, so J/t = 0.4



Hole in an antiferromagnet
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We consider the case Ne = N � 1 - a single hole in an antiferromagnet

Ht�J = �t Â
hi,ji

Â
s

⇣
ĉ

†
i,sĉ

j,s + H.c.
⌘
+ J Â

hi,ji
Si · Sj ,

A single hole will not affect the magnetic order ) we start from the Néel state

ν

E
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ĉ

†
i,sĉ

j,s + H.c.
⌘
+ J Â

hi,ji
Si · Sj ,

A single hole will not affect the magnetic order ) we start from the Néel state

ν

E
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We consider the case Ne = N � 1 - a single hole in an antiferromagnet

Ht�J = �t Â
hi,ji

Â
s

⇣
ĉ

†
i,sĉ

j,s + H.c.
⌘
+ J Â

hi,ji
Si · Sj ,

A single hole will not affect the magnetic order ) we start from the Néel state

ν

E

The magnetic energy increases linearly with the number of steps

The hole is self-trapped
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Variational wave function for the self-trapped state at site i

α2
+ + + ......

α1 + + +α0Ψ  i

i

+ + .......

+=

We decompose the t-J Hamiltonian ...

Ht = �t Â
hi,ji

Â
s
(ĉ†

i,sĉ
j,s + H.c) HI = J Â

hi,ji
S

z

i
S

z

j
H? =

J

2 Â
hi,ji

⇣
S
+
i

S
�
j
+ S

�
i

S
+
j

⌘

... and determine the coefficients an variationally (see notes)

Eloc =
hYi |Ht + HI |Yi i

hYi |Yi i
! min



Variational wave function for the self-trapped state at site i
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This is what the solution looks like for J/t = 0.4
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Escape from the trap!
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Increase of magnetic energy leads to formation of self-trapped states |Yi i

However, delocalization due to spin-flip term H? = J

2 Âhi,ji
⇣

S
+
i

S
�
j
+ S

�
i

S
+
j

⌘

i

j Matrix element:
J

2
a2 a0

By ‘two steps + 1 spin-flip’ the center i of |Yi i is shifted by two lattice sites

(1,1)

(2,0)

Hopping to (1, 1) and (2, 0) like neighbors

Matrix element to (1, 1) ⇡ twice to (2, 0)

Matrix elements µ J rather than t !



Propagation of the hole
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We arrive at a tight-binding-like picture

Hopping via exchange!

α2
+ + + ......

α1 + + +α0Ψ  i

i

+ + .......

+=



Propagation of the hole
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We arrive at a tight-binding-like picture

Hopping via exchange!

A Bloch state of the hole is

|Yk,"i =

r
2
N

Â
j2"�SL

e
ik·Rj |Yi i

Hopping matrix element due to spin-flip term (see notes)

hYj |H?|Yi i = J

•

Â
n=0

(z � 1)n anan+2 = J · m



Band structure of the hole
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Ek = Eloc � 4Jm + 4Jm [ cos(kx ) + cos(ky ) ]
2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

(E
k-

E
c)

/J

(0,0) (π,π) (π,0) (0,0)

Note: the bandwidth is W ⇡ 2J - the free bandwidth would be Wfree = 8t so that
Wfree

W
= 4t

J
= 10 for J/t = 0.4 - Massive downward renormalization!



Comparison to experiment
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In actual cuprate materials there are also substantial hopping integrals t 0 and
t 00 between (1, 1)-like and (2, 0) like neighbors - these can be included into the
present theory (see notes) and we can compare to experiment:

-0.4

-0.2

 0

E
k 

-E
F
 (

e
V

)

(0,0) (π,π) (π,0) (0,0)

Band dispersion from ARPES for the AF insulator Sr2CuO2Cl2 from
S. LaRosa et al. PRB 56, R525(R) (1997)

Parameter values are t = 350meV, J = 140meV, t 0 = �120meV, t 00 = 60meV



We have seen that ...
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The Heisenberg exchange gives the spins a ‘life of their own’ - resulting in

antiferromagnetism in the Mott insulator and spin excitations

The holes move in this ‘spin background’ and - their motion is modified strongly

For a finite concentration of holes this also goes the other way round - the spins
are ‘stirred’ by the holes

In cuprate superconductors the antiferromagnetic order disappears for hole
concentrations of a few percent - our calculations so far become invalid ...



A tough problem
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Whereas it is very easy to write down ordered states it is very difficult to write

down a wave function for spins that is

a) disordered

b) has one electrons/site

c) can be treated in any other way than numerically

Example: a state obtained by simply summing over all 2N possible spin states
should be ‘disordered’?

|yi =
"
Â

s1=#

"
Â

s2=#
· · ·

"
Â

sN=#
|s1, s2, . . . , sN i

In reality this is the ferromagnetic state in x-direction: ’i (|i , "i+ |i , #i)



Recap: Dimer basis
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The Heisenberg antiferromagnet on a dimer with sites labeled 1 and 2

1 2

H = J S1 · S2

Eigenstates are the singlet with energy � 3J

4 and the 3 triplets with energy J

4

|si =
1p
2

⇣
c

†
1,"c

†
2,# � c

†
1,#c

†
2,"

⌘
|0i

|tx i =
1p
2

⇣
c

†
1,#c

†
2,# � c

†
1,"c

†
2,"

⌘
|0i

|ty i =
ip
2

⇣
c

†
1,"c

†
2," + c

†
1,#c

†
2,#

⌘
|0i

|tzi =
1p
2

⇣
c

†
1,"c

†
2,# + c

†
1,#c

†
2,"

⌘
|0i

The triplets obey Sa|tbi = ieabg |tgi ! they form a vector under spin rotations



The singlet soup
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Let the N sites of the plane be partitioned into N/2 dimers - each made of two
nearest neighbors:

Let each dimer be covered by a singlet - the resulting state is

|Y0i = ’
(i,j)2D

1p
2

⇣
c

†
i,"c

†
j,# � c

†
i,#c

†
j,"

⌘
|0i

D is the set of N/2 pairs (i , j) of nearest neighbor sites corresponding to the
given dimer covering

|Y0i is the ground state of the ‘depeleted Hamiltonian’ Hd = J Â(i,j)2D Si · Sj



Excitations of the singlet soup

44

KIT

|Y0i = ’
(i,j)2D

1p
2

⇣
c

†
i,"c

†
j,# � c

†
i,#c

†
j,"

⌘
|0i

m

l

Let us assume we act with - say - J Sx

i
Sx

j
along a bond not included in D

S1,x |s i =
1
2
�
S
�
1 + S

+
1
� 1p

2

⇣
c

†
1,"c

†
2,# � c

†
1,#c

†
2,"

⌘
|0i

=
1

2
p

2

⇣
c

†
1,#c

†
2,# � c

†
1,"c

†
2,"

⌘
|0i = 1

2
|tx i



Excitations of the singlet soup
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|Y0i = ’
(i,j)2D

1p
2

⇣
c

†
i,"c

†
j,# � c

†
i,#c

†
j,"

⌘
|0i

m

l

Let us assume we act with - say - J Sx

i
Sx

j
along a bond not included in D

S1,x |s i =
1
2
�
S
�
1 + S

+
1
� 1p

2

⇣
c

†
1,"c

†
2,# � c

†
1,#c

†
2,"

⌘
|0i

=
1

2
p

2

⇣
c

†
1,#c

†
2,# � c

†
1,"c

†
2,"

⌘
|0i = 1

2
|tx i



Excitations of the singlet soup

44

KIT

|Y0i = ’
(i,j)2D

1p
2

⇣
c

†
i,"c

†
j,# � c

†
i,#c

†
j,"

⌘
|0i

m

l

n

Let us assume we act with - say - J Sx

i
Sx

j
along a bond not included in D

S1,x |tx i =
1
2
�
S
�
1 + S

+
1
� 1p

2

⇣
c

†
1,#c

†
2,# � c

†
1,"c

†
2,"

⌘
|0i

=
1

2
p

2

⇣
c

†
1,"c

†
2,# � c

†
1,#c

†
2,"

⌘
|0i = 1

2
|si



Excitations of the singlet soup
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|Y0i = ’
(i,j)2D

1p
2

⇣
c

†
i,"c

†
j,# � c

†
i,#c

†
j,"

⌘
|0i

m

l

n

Let us assume we act with - say - J Sx

i
Sx

j
along a bond not included in D

S1,x |tx i =
1
2
�
S
�
1 + S

+
1
� 1p

2

⇣
c

†
1,#c

†
2,# � c

†
1,"c

†
2,"

⌘
|0i

=
1

2
p

2

⇣
c

†
1,"c

†
2,# � c

†
1,#c

†
2,"

⌘
|0i = 1

2
|si



Excitations of the singlet soup
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Now compare

i j

(c) (d)

i j i j

lk k l

i j

(a) (b)

and

m

l l

m

n



Excitations of the singlet soup
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m

l l

m

n

Assume that the dimers are labeled by l ,m, n · · · 2 {1, 2, . . . , N

2 }

Introduce Bosons which stand for a singlet or a triplet, created by s†
m and t†

m,a
a 2 {x , y , z}

The first transition is described by t†
m,x t†

l,x sms
l

the second one by t†
n,x s†

mtm,x sn

Why Bosons? Singlet and triplet consist of two electrons each so that
operators referring to different dimers commute

Next we need to set up the Hamiltonian for the Bosons



A technical detail
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1 2

We found (a 2 {x , y , z})

S1,a|si =
1
2
|tai S1,a|tai =

1
2
|si

Now exchange 1 $ 2

S2,a|si = �1
2
|tai �S2,a|tai =

1
2
|si

Sign of matrix element depends on ‘where the spin operator touches the dimer’

We need to adopt a convention how to label the sites in the dimers

= 1λι = −1λ ι

= 1λι

= −1λ ι

1

2

21

Si,a|si =
li

2
|tai

Si,a|tai =
li

2
|si



Transcribing the Hamiltonian
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Spin operator: Sj !
lj

2

⇣
t
†
s + s

†
t

⌘
� i

2
t
† ⇥ t

= 1λι = −1λ ι

= 1λι

= −1λ ι

1

2

21

m

n

i

j

J Si · Sj !
Jli lj

4

⇣
s

†
mtm + t

†
msm

⌘
·
⇣

s
†
ntn + t

†
nsn

⌘
� J

4
(t†

n ⇥ tn) · (t†
m ⇥ tm)

� iJ

4

h
li

⇣
s

†
mtm + t

†
msm

⌘
· (t†

n ⇥ tn) + lj

⇣
s

†
ntn + t

†
nsn

⌘
· (t†

m ⇥ tm)
i

This was for bonds which connect dimers - the exchange term within the dimers is

Hintra = Â
m

✓
J

4
t
†
m · tm � 3J

4
s

†
msm

◆
= J Â

m

t
†
m · tm � N

2
3J

4



All in all
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H = J Â
m

t
†
m · tm + Â

m,n

⇢
Jli lj

4

⇣
s

†
mtm + t

†
msm

⌘
·
⇣

s
†
ntn + t

†
nsn

⌘

� iJ

4

h
li

⇣
s

†
mtm + t

†
msm

⌘
· (t†

n ⇥ tn) + lj

⇣
s

†
ntn + t

†
nsn

⌘
· (t†

m ⇥ tm)
i

�J

4
(t†

n ⇥ tn) · (t†
m ⇥ tm)

�
�µ Â

m

⇣
t
†
m · tm + s

†
msm � 1

⌘

Constraint: t
†
m · tm + s

†
msm = 1



Approximations start ...
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J Si · Sj !
Jli lj

4

⇣
s

†
mtm + t

†
msm

⌘
·
⇣

s
†
ntn + t

†
nsn

⌘
� J

4
(t†

n ⇥ tn) · (t†
m ⇥ tm)

� iJ

4

h
li

⇣
s

†
mtm + t

†
msm

⌘
· (t†

n ⇥ tn) + lj

⇣
s

†
ntn + t

†
nsn

⌘
· (t†

m ⇥ tm)
i

First step: Assume singlet Bosons as condensed into the state with k = 0

Replace the operators s†
m and sm by the (real) condensation amplitude s

J Si · Sj !
Js2li lj

4

⇣
tm + t

†
m

⌘
·
⇣

tn + t
†
n

⌘
� J

4
(t†

n ⇥ tn) · (t†
m ⇥ tm)

� iJs

4

h
li

⇣
tm + t

†
m

⌘
· (t†

n ⇥ tn) + lj

⇣
tn + t

†
n

⌘
· (t†

m ⇥ tm)
i

This gives a quadratic term
�
tm + t†

m

�
·
�
tn + t†

n

�
= t†

m · tn + t†
n · tm + t†

m · t†
n + tn · tm



Approximations continue ....
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J Si · Sj !
Js2li lj

4

⇣
t
†
m · tn + t

†
n · tm + t

†
m · t

†
n + tn · tm

⌘
� J

4
(t†

n ⇥ tn) · (t†
m ⇥ tm)

� iJs

4

h
li

⇣
tm + t

†
m

⌘
· (t†

n ⇥ tn) + lj

⇣
tn + t

†
n

⌘
· (t†

m ⇥ tm)
i

The quartic term can be treated in mean-field approximation - however, it turns out
that the corrections always are small

There remains the last line....this contain terms like t†
m · (t†

n ⇥ tn) -

‘one triplet in - two triplets out’

For phonons this would describe the ‘decay’ of a phonon due to anharmonicities

For simplicity we simply discard this term ....



Approximate Hamiltonian
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H = J Â
m

t
†
m · tm + Â

i,j

Js2li lj

4

⇣
t
†
m · tn + t

†
n · tm + t

†
m · t

†
n + tm · tn

⌘

�µ Â
m

⇣
t
†
m · tm + s

2 � 1
⌘



Final Approximation
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m

l l

m

n

The excitations of the ‘singlet soup’ can be described as propagating triplets

This seems to be of little use because there is no unique dimer covering and
for a macroscopic system we cannot even write down a single one

However, we can represent the Heisenberg exchange in terms of singlets and
triplets for any dimer covering

Therefore any dimer covering should give the same results

Therefore we might come up with the idea to average the dimer Hamiltonian
over all possible coverings



Averaging the dimer Hamiltonian
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We put a dimer on any of the 2N bonds of the lattice

m

n

i

j

If two dimers m and n are connected by a term Si · Sj the averaged
Hamiltonian is

h̄m,n = z hm,n z =
Nm,n

Nd

hm,n =
Js2li lj

4

⇣
t
†
m · tn + t

†
n · tm + t

†
m · t

†
n + tm · tn

⌘

Nm,n: Number of dimer coverings which contain the bonds n and m

Nd : Total number of dimer coverings



Averaging the dimer Hamiltonian
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We had

h̄m,n = z hm,n z =
Nm,n

Nd

We use a crude estimate for z

m

n
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Averaging the dimer Hamiltonian
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We had

h̄m,n = z hm,n z =
Nm,n

Nd

We use a crude estimate for z

m

n

This gives z ⇡ 1
12



Final Hamiltonian
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In this way we obtain the final triplet Hamiltonian (Jeff = J � µ)

H = Jeff Â
m

t
†
m · t

†
m +

s2z

4 Â
m\n=0

Â
i2m

j2n

Ji,j li lj

⇣
t
†
m · t

†
n + tn · tm + t

†
m · tn + t

†
n · tm

⌘

Sum over m \ n = 0 runs over all nonintersecting pairs of bonds

Ji,j = J if i and j are nearest neighbors and zero otherwise

H is a quadratic form and can be diagonalized by Fourier transform and
Bosonic Bogoliubov transformation -see notes - and we obtain

wk =
q

J2
eff

+ 2Jeff lk

lk = s
2zJ

✓
3
2
+ 2gk � 4g2

k

◆

gk =
1
2
(cos(kx ) + cos(ky ))



Recall:
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wk =
q

J2
eff

+ 2Jeff lk

lk = s
2zJ

✓
3
2
+ 2gk � 4g2

k

◆

gk =
1
2
(cos(kx ) + cos(ky ))

We should now set up a self-consistency procedure to determine the
renormalized triplet energy Jeff = J � µ and singlet condensation amplitude s2

However, we simplify matters and adjust the two unknown parameters Jeff and
s2z to reproduce two characteristic energies: bandwidth 2J and spin gap Ds
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Doped Mott insulator

58

KIT

We return to the single dimer but now consider the case of one electron

H = �t Â
s

⇣
ĉ

†
1,sĉ2,s + ĉ

†
2,sĉ1,s

⌘
+ J S1 · S2

Only the term µ t can be active

Its eigenstates are the bonding (+) and antibonding (-) state

|f±,si =
1p
2
(ĉ†

1,s ± ĉ
†
2,s)|0i

They have spin s = ± 1
2 - the spin quantum numbers of an electron

They have energy �t (bonding) and t (antibonding)

We incorporate these into our theory by introducting a new type of bond particle

If dimer m is in one of the states |f±,si we consider it as occupied by a
Fermion, created by f †

m,±,s

Why a Fermion? Because these states have an odd number of electrons!



Transcribing the Fermion operator
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The two Fermion creation/annihilaton operators can be combined into a spinor

c
† =

 
c†
"

c†
#

!
c =

 
c"

c#

!

Under spin rotations c transforms like ity c† (ity is the ‘metric spinor’)

The representation of the c
j
-spinor is found to be

cj ! 1
2

:
�
s ity + lj t ·~t ity

� ⇣
f
†
+ � lj f

†
�
⌘

:

s and t are the annihilation operators for singlet and triplet Bosons

~t is the vector of Pauli matrices

The ‘spinor product’ t ·~t ity f† is how to construct a spinor from a

vector operator and a spinor - i.e. familiar angular momentum addition



Doped Holes
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cj ! 1
2
�
s ity + lj t ·~t ity

� ⇣
f
†
+ � lj f

†
�
⌘

c
†
i

! 1
2

⇣
s

†
ity + li t

† ·~t ity

⌘
( f+ � li f� )

From here on everything is analogous to the procedure for triplets

We ‘translate’ �t Âs ĉ†
i,sĉ

j,s - this gives a complicated expression ...

We again simplify this by replacing the singlet operators sm and s†
m by the

condensation amplitude s and dropping the triplets

We again do the averaging over dimer coverings thereby introducing z

In the end we again obtain a Hamiltonian which is a quadratic form
The lowest hole-band becomes

ek = const + 2s
2zt(gk + 2g2

k
)

However, we need to discuss how to determine the Fermi surface



Counting electrons
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The constraint now becomes

s
†
msm + t

†
m · tm + Â

s

⇣
f

†
m,+,sfm,+,s + f

†
m,�,sfm,�,s

⌘
= 1

For a fixed dimer covering the number of electrons is

Ne = 2 · Â
m

⇣
s

†
msm + t

†
m · tm

⌘
+ 1 · Â

m,s

⇣
f

†
m,+,sfm,+,s + f

†
m,�,sfm,�,s

⌘
hh

= 2 · Â
m

 
s

†
msm + t

†
m · tm + Â

s

⇣
f

†
m,+,sfm,+,s + f

†
m,�,sfm,�,s

⌘ !

�1 · Â
m,s

⇣
f

†
m,+,sfm,+,s + f

†
m,�,sfm,�,s

⌘

= 2 · N

2
� Â

m,s

⇣
f

†
m,+,sfm,+,s + f

†
m,�,sfm,�,s

⌘



We had
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Ne = N � Â
m,s

⇣
f

†
m,+,sfm,+,s + f

†
m,�,sfm,�,s

⌘

1 � d = 1 � 1
N

Â
m,s

⇣
f

†
m,+,sfm,+,s + f

†
m,�,sfm,�,s

⌘

d =
1
N

Â
m,s

⇣
f

†
m,+,sfm,+,s + f

†
m,�,sfm,�,s

⌘

The doped holes correspond to spin- 1
2 Fermions - compare Hubbard-I

The Fermi surface is a hole pocket whose area is µ d

When approaching the Mott insulator - d ! 0 - the area of the hole pocket
shrinks to zero



Bands and Fermi surface
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The topmost band for the Fermions

ek = const + 2s
2zt(gk + 2g2

k
)

With s2z = 0.16:

-1

-0.5

 0

(0,0) (π,π) (π,0) (0,0)

Max Max

ε
k/

t

(0,π)

(0,0) (π,0)

With hopping terms between (1, 1)- and (2, 0)-like neighbors the Fermi surface
becomes a hole pocket

Here t 0 = �0.2t , t 00 = 0.1t , d = 0.1



Comparison to experiment
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FS from dimer theory - with shift
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FS in the ‘pseudogap phase’
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Phase diagram revisited
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Summary
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The goal of the lecture was mainly to show why doped Mott insulator are so
tough to handle

The two Hubbard bands must be in the theory from the very beginning - only
the Hubbard-I approximations and extensions do this

The ions in a Mott insulator carry a spin - the spins ‘communicate’ resulting in
spin excitations

Mobile carriers interact strongly with spin excitations resulting in massive
modification of the band structure

While much of this can be treated in an antiferromagnetic state the state
showing superconductivity has no order

Finally another key problem is how to describe the phase transition small Fermi
surface to large Fermi surface


