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Standard Model: Elementary Particles
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indistinguishability and statistics

N-particle systems described by wave-function with
N particle degrees of freedom (tensor space):
(x4, ..., XN)

iIntroduces labeling of particles

indistinguishable particles: no observable exists to distinguish them
in particular no observable can depend on labeling of particles

probability density is an observable
consider permutations P of particle labels

PV (x1,x0) = V(xo, x1) with [V (x1, x)|? = [V (x, x1)|?
~ PW(Xl, X2) = €i¢W(X1, X2)

when P2=|d = e¢=£1 (¥ (anti)symmetric under permutation)
antisymmetric: WY(x1, x2—x1) = 0 (Pauli principle)



spin-statistics connection

bosons (integer spin): symmetric wave-function

fermions (half-integer spin): anti-symmetric wave-function

Feynman Lectures lll, 4-1:

Why is it that particles with half-integral spin are Fermi particles whose amplitudes add
with the minus sign, whereas particles with integral spin are Bose particles whose
amplitudes add with the positive sign? We apologize for the fact that we cannot give
you an elementary explanation. An explanation has been worked out by Pauli from
complicated arbuments of quantum field theory and relativity. He has shown that the
two must necessarily go together, but we have not been able to find a way of
reproducing his arguments on an elementary level. It appears to be one of the few
places in physics where there is a rule which can be stated very simply, but for which
no one has found a simple and easy explanation. The explanation is deep down in
relativistic quantum mechanics. This probably means that we do not have a complete
understanding of the fundamental principle involved. For the moment, you will just have
to take it as one of the rules of the world.



indistinguishable particles

notion of elementary particle change over time/length/energy-scale
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The Theory of Everything

R. B. Laughlin* and David Pines™*$
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We discuss recent developments in our understanding of matter,
broadly construed, and their implications for contemporary re-
search in fundamental physics.

he Theory of Everything is a term for the ultimate theory of

the universe—a set of equations capable of describing all
phenomena that have been observed, or that will ever be
observed (1). It is the modern incarnation of the reductionist
ideal of the ancient Greeks, an approach to the natural world that
has been fabulously successful in bettering the lot of mankind
and continues in many people’s minds to be the central paradigm
of physics. A special case of this idea, and also a beautiful
instance of it, is the equation of conventional nonrelativistic
quantum mechanics, which describes the everyday world of
human beings—air, water, rocks, fire, people, and so forth. The
details of this equation are less important than the fact that it can
be written down simply and is completely specified by a handful
of known quantities: the charge and mass of the electron, the
charges and masses of the atomic nuclei, and Planck’s constant.
For experts we write
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we have learned why atoms have the size they do, why chemical
bonds have the length and strength they do, why solid matter has
the elastic properties it does, why some things are transparent
while others reflect or absorb light (6). With a little more
experimental input for guidance it is even possible to predict
atomic conformations of small molecules, simple chemical re-
action rates, structural phase transitions, ferromagnetism, and
sometimes even superconducting transition temperatures (7).
But the schemes for approximating are not first-principles
deductions but are rather art keyed to experiment, and thus tend
to be the least reliable precisely when reliability is most needed,
1.e., when experimental information is scarce, the physical be-
havior has no precedent, and the key questions have not yet been
identified. There are many notorious failures of alleged ab initio
computation methods, including the phase diagram of liquid *He
and the entire phenomenonology of high-temperature super-
conductors (8—10). Predicting protein functionality or the be-
havior of the human brain from these equations is patently
absurd. So the triumph of the reductionism of the Greeks is a
pyrrhic victory: We have succeeded in reducing all of ordinary
physical behavior to a simple, correct Theory of Everything only
to discover that it has revealed exactly nothing about many things
of great importance.

In light of this fact it strikes a thinking person as odd that the
parameters e, f, and m appearing in these equations may be
measured accurately in laboratory experiments involving large
numbers of particles. The electron charge, for example, may be
accurately measured by passing current through an electrochem-
ical cell, plating out metal atoms, and measuring the mass
deposited, the separation of the atoms in the crystal being known
from x-ray diffraction (11). Simple electrical measurements
performed on superconducting rings determine to high accuracy
the quantity the quantum of magnetic flux ic/2e (11). A version



Theory of Almost Everything

given Hamiltonian

- 3 N ZaZs
‘“ZV”ZM—W> I RPN

j<k j=1 a=1 a<
solve eigenvalue problem
/—/W(Xl, C ,X/\/) — EW(Xl, Ce ,X/\/) 3N-dimensional pde
electrons indistinguishable how possible?

no observable M(x1,... ,xn) can distinguish them
l.e. M symmetric under exchange of coordinates

eigenfunction needs to be antisymmetrized still eigenfunction?

1
AW(XL C ,X/\/) e m E (—1)PW (Xp(l), C ,Xp(/\/)) N! terms
P



antisymmetrization

N! terms — hard problem in general
easy O(N\B) for product wavefunctions

oy (X1) Qan(X1) + Qay(X1)

\/MA(pOtl (Xl) Py (X/\/) — \/% (pall(XQ) QDOQ'(Xz) .. . waN-(XQ)

<Pa1.(></\/) Do, .(X/\/) <PaN.(X/\/)

Slater determinants Po,. . o,(X1, .- -, XN )




basis of Slater determinants

complete set of single-electron orbitals

Z (pn(X/) (pn(X) — 6(X/_X)

expand N-electron function in 1st variable

a(xy, ..., XN) = Z/dx{ a(xq, ..., Xn) ©n, (X1) ©n, (X1)

and repeat to obtain expansion in product states

antisymmetric: states with nj=n; vanish, nj<=n; only differ by sign

basis of Slater determinants



second quantization: motivation

labeling of coordinates of identical particles is artificial
get rid of coordinates?

Dirac formalism
separate coordinates from states

p(x) = (xlp)

absorb coordinates in operators

/ X D GIMO) G (x) = / A (@nlX) M) (XIom) =+ (@0 Mom)

coordinate-free formalism



second quantization: coordinates

vacuum state |0)
and

set of operators operators ‘i’(x)
defined by:

W (x)[0) =0 W(x), Y(x)} =0={Ul(x), Ui(x)}

(0]0) =1 U(x), UT(x")} = 6(x—x")

anticommutator: {A,B} := AB + BA




second quantization: states

creation operator  C, = / dx o (X) VT (x)

[U(x), cb} = [dxX oo (X) {U(x), UT(x)} = pu(x)

{ca, cf} = / dx' oo (X) {W(xX'), i} = [dx @a(x)pp(x') = (alB)

Cx|0) = 0 {Ca,CB}:O:{Cg;,Cg}

00 =1 {ca ¢t} = (a|B)



orbital basis transforms

creation operators transform as the orbitals they represent

Gi) = Ula,) Z‘:BJ (o) —Z|O‘u> (ou|Ulej)  ~ C,8, Z

I

operators transform like vectors?

write transformation matrix U = eV
t _ _c'Mc -+ _—c'Mc _ _—c'MTc cTMTc
Cg. = € Ca, € Cg = € Ca,, €

when M anti-hermitian (U unitary) annihilators transform like creators



second quantization: Slater determinants

1 " N A
DParas..an (X1, X0, . . ., XN) = W <O } V(ix)V(x) ... ¥(xy) C;N . C);Q C;ftl

proof by induction
N=1: (0|W(x)cl |0)={0]|{¥(x) ¢} —c,¥(x)|0)=wa (x1)

N=2: <O | l//)(Xl)l//}(Xg) C;LQ C;l O>

— <O l//}(Xl) ((,DOC2 (XQ) — C;zl//)(XQ)) CcJ)rcl O>
— <O l//)(Xl)C;rtl O> (pa2(X2) — <O | LD(Xl)C;QIp(XQ)Cil | O>

= P, (X1) P, (X2) — P, (X1) 0y (X2)

0)



second quantization: Slater determinants

0) =
+ <O ‘ W(xi). . . W(xn_1) Gy s - - Cle

— <O ‘ WU(xi) ... V(xn_1) | P cl,

general N: commute ¥(xn) to the right
(0] W0a). . W)W 0m) eyl .- el

O> Pay (Xn)
O> Pay_, (Xn)

(—1)N-1 <o ‘ V(). . U a) ek, ... cl,

0> Poy (XN)

Laplace expansion in terms of N—71 dim determinants wrt last line of

oy (X1)  Qar(X1) +° Qau(X1)
P, (XQ) Pas (XQ) o Py (X2)

<Pa1.(></\/) <Pa2.(></\/) <PaN-(X/\/)



second quantization: Dirac notation

separate coordinates from orbitals
1 5 (e VO ) T t ot
CpOthtz---Ot/\/ (Xl' X2y -+ X/\/) — W <O { W(Xl)W(XQ) T W(X/\/) Capy """ Car Cay | O>

analogous to Dirac notation

Pa(X) = (X|a)

product states []_, ¢/ |0) are many-body generalization of Dirac states

evaluate matrix elements ...



second quantization: expectation values

expectation value of operator wrt N-electron Slater determinants

/dx1 e dXy Py (X1, X)) M(Xa, X)) Pageea (XL, X))
/dx— (0| TT &5, TT¥" (xa)[0) M(x)\/%<0|nl/7(xn)nc&}0>

= (0T 6, 77 [ dx TTWH () MGx) TTW () T, [0)

) —

=M
|0)(0] = 1 on 0-electron space

~ 1 ~ ~ ~ ~
M = N /dx1 e dxy VT () VT ) M, -+ xn) W (a) - - W (xy)

only valid for N-electron states!



second quantization: zero-body operator

zero-body operator M(x+,...xn) = 1 independent of particle coordinates

second quantized form for operating on N-electron states:
N 1

/\//O = m Xm C]’XQ " XN l//)Jr(X/\/) e V/)T(XZ)U}T(XI) l//)(Xl)l//)(XQ) S l//)(XN)
1 R N N " N
N dxo -y Vi) Vi) N V(x) W)
1 R ~ - -
= [ Do oWl B0e) 1 W) Bw)
only(!) when operating on N-electron state
1 NN - - ¢
= i 1.2 ... N=1 using N ;:/dxt/ﬂ(x)t//(x) with [N, C(U =c!

~ Ncl =l (N+1)  ~ Ncy, =c
result independent of N
overlap of Slater determinants

[ @x B0, ()95, () = (Ol Cu, €+ 10




second quantization: one-body operators

one-body operator M(xq, ..., Xn) = ZJ M (X))

A 1
M N

dxy - dxy U (xp) - - ¥ () Z My (x) W(xq) - ¥ (xp)
= %Z/dleff‘t(xj) Mi(x) (N=1)! ¥(x))
= % Z/dxj W (x;) My (x) W(x;)

= /dx UT(x) Mi(x) ¥(x) result independent of N

expand in complete orthonormal set of orbitals

W = 37 [ 400, 0 M(3) 0, () €l = D (talMsfatm) € o,

n,m
transforms as 1-body operator




second quantization: two-body operators

two-body operator M(xq, ..., XN) = Z,-<J- Ma(x;, x;)

/\

M

1
N!

dxy -+ iy W) 0T () Y - Ma(xi, %) W(x1) -« W (x)

1<J

— % Z / dx;dx; V/)T(XJ-)U/)T(X/) Ms(x;, XJ) (N=2)! LD(X/)U/)(XJ)
N(/\}—l) 2 / i T ()W (1) Mo (i, x5) W ()W ()

_ ! / dx dx' WH(x') Wt (x) Ma(x,x') W(x) F(x')

2
result independent of N

expand in complete orthonormal set of orbitals

M

1
=3 30 [ dxx o, (X0, () Mo, X) 9, (X0, () € Ly o

n.n,m,nm

1
— E Z <OénOén/|M2|Olmam’> C;[tn, C;[cn Cour Cam/

n,n,m,nm



2-body matrix

_ = P~
My = 5 E (o | MalomQy) €, Ch, Can Car
W
n,n’,m,nv Y no contribution for

nn' mm’

n=n’or m=m’
sign-change for
n<n’ or m<m’

4-index tensor

collect terms with same operator content

M2 — E (Mnn’,mm’ T Mnn’,m’m) C(J)[cn/ C(J)rcn Cocm Cam/

n<n' m<m’

:ZMnn/,mm/

two-body matrix
of dim Norm(Norb—1)/2

together with Nors? hopping terms
completely specifies Hamiltonian



variational principle and Schrodinger equation

energy expectation value E[Y] = <Q<p\|‘1/‘_/\=;/>}>
variation
(OV|H|W)Y 4+ (V|H[oV) OV|V) + (V|ov)
ElV+oV] = E[V]A VIH|W O
[W+6W] = E[V] O (W) ==
=E[V]
OE[V] — H|W) — (V[H[V) [V)
variational equation: 0 = SV — WS - H.c.

equivalent to eigenvalue equation

H|Wn> — En|wn>



variational principle

expand |W) # 0 in eigenfunctions

S ) (W [HIW ) (W, W) ST E, n|w\ L X Eo(v n|w>{2

F[v] = = =

2 VW) (W [ W) (Wi | W) ST T S (WL W]

assume eigenvalues sorted Eo < E1 < ...
E[\VJ_H] > En If <\|/,"\UJ_n> =0 fori=20,..., n—1.

variational principle for excited states

in practice only useful when orthogonality to (unknown) states
ensured, e.g., by symmetry



Ha = <<I>]/—A/|<I>>a, _ | (Do H|D1) (Do]H|Ds) - -

expand in Slater basis

rewrite  H|WV,) = E,|V,)

choose (orthonormal) orbital basis { ¢« | k } and corresponding
basis of Slater determinants { @«1,...kn | k1 < ... < kn')

|\U> — Z dky,... kn |q>/<1 ----- k/\/> — Za/ |(DI> — |(I)> a

expand Schrddinger equation in Slater basis
E (i|W) = (®i[H[W) = ) _(®|H|®;)(P)[W)
matrix eigenvalu; problem
[(®1|H[P1) (P1]H|D2) -\ [ar) (a1
| = | a

ANV AR Y

Ea



variational principle

restrict to finite Slater basis !(i)} = (|<I>1>, P

(b
~—
N—"

(®|H|®)a, = Ha, = Epa, ~ |V,) =|®)a,
solve with LAPACK

t

variational principle: £, < E, forne {0,...,[—1}

art: systematically increase basis to achieve convergence

nesting of eigenvalues

consider problem with basis size L as exact problem
variational principle for —H: —E,_; < —E; . forie{1l,..., L}

En<E,<E, . forne{0, ..., [—1}



dimension of Hilbert space

many-body problem

ways of putting N electrons in K orbitals: K (K-1) (K-2)- - - (K—=(N-1)) = KI/(K=N)!

order in which electrons are put does not matter: N!

Kl

dim 7—[%\/) =

use symmetry to reduce dimension

~ NI(K — N)!

e.d., spin conserved

dim Hél}\?'l\w =

>>> def binom(K,N):
1f N==0:
return 1
else:

(

K
Ny

)<

(n)

K
Ny

return (K-N+1)*binom(K,N-1)/N

>>> binom(24,12)**2
7312459672336

>>> binom(24,12)**2*8/2**30

54482

)

M N, N,|dimension of Hilbert space
2 1 1 4
4 2 2 36
6 3 3 400
8 4 4 4 900
10 &5 5 63 504
12 6 6 853 776
14 7 7 11 778 624
16 8 8 165 636 900
18 9 9 2 363 904 400
20 10 10 34 134 779 536
22 11 11 497 634 306 624
24 12 12 7 312459 672 336




non-interacting electrons
H = Z Homclc,
apply to single Slater determinant: linear combination of single-excitations

choose orbitals that diagonalize single-electron matrix H

H = E €n0nmClc = E e clc
n,m n

N-electron eigenstates |®,) = C,T,N e c,il 0)

N
Zencﬁ:cn C,JSN e C;UO> — (Z sn,) C,T,N ce C,T,1|O>
n i=1



Hartree-Fock

variational principle on manifold of Slater determinants

(®|H|®)
(@|®)

EHF — miﬂcp

unitary transformations among Slater determinants

O\) = e with M = Z Mag C;CB hermitian
a,p

energy expectation value

E(N) = (@] A e ™M) = (@|H|®) + iX(@|[A, M]|) + (/2)2

variational equation

(@|[H, M]|o"™) =0

(@|[[A, M, M]|®) + - --



unitary transformations on Slater manifold

O\) = e™  with M = Z Mg Cj;cﬁ hermitian

o0
iAM T t MM = IAM XM —iAM IAM t —iAM L iIAM
ol ch,10) = el e e e e"cl. e e'*™|0)
N———’ N—
> p(e™M)ays C5 =[0)
d e e PN L |
— oM C,]; oAV _ e i T, e—l>\/\//| . _ /Z et My
2=0
d” iAM _t _—iAM d />\M t —iAM 2 t
7] R > D CorMary | P =23 ) Moar Moty
A=0 A=0 o o
(M2)Ol’)’
d”n o o
Y. €I>\M C,]; e—/AM _ in Z C;[t (Mn)oc'y
>\:O o'

ey &l = clifep, &} —{ch, clye, = cl 6



HF variational condition
<<DHF][/—A/, /\%]\CPHF> =0 ~ <<Z>HF][/-A/, C,T,Cm + C,Tncn]\CDHF> =0 VYn>m

orthonormal basis  [®"F) = ¢! --- c!|0)

Onm|®) ifn, me{1,..., N}
t HF\ __ n,m
CnCm‘d) > - { 0 It m % {1 ..... N}

simplifies variational condition to (Brillouin theorem)

(PP |cl c HIO"FY =0 vYme{l,..., NY né¢{l, ..., N}

applying Hamiltonian does not generate singly excited determinants



analogy to non-interacting problem

/:/ — Z C/]; 7_nm Cm + Z C/Jg C/T;’ (Unn’,mm’ - Unn’,m’m) Cm’ Cm
n,m

n>n'", m>mn’

Brillouin condition

(Tnm + Z (Unm’,mm’ o Unm’,m’m) ) C,T;Cm‘CDHF> =0 Vn>N2>m

same condition as for non-interacting Hamiltonian Fnm (Fock-matrix)

depends on @HF = self-consistent problem




quasi-particle picture

total energy

<¢HF|/:/|CDHF> — Z (Tmm+z Amm’) — Z (Tmm‘|_ % Z Amm’) — Z (8;'7': — % Z Amm’)

m<N m'<m m<N m' <N m<N m' <N

remove electron from eigenstate of Fnn (Koopmans’ theorem)

N A 1 1
(@"F|c] A, oM7) — (@HF|AjoHF) = - (Taa to 2 Aam') =5 2 Ama= e’

m' <N mz#a<N

electron-hole excitation (b> N = a)

el = (@5 |A|®NE ) — (@7 | H|0F) = ]l —€lF — A,

electron-hole attraction
1

1 1
Aab — §(Aab + Aba) — 5

<90a90b — PbPa | PaPb — <Pb90a> > 0



‘{@ The Sveriges Riksbank Prize in Economic Sciences in Memory of
" Alfred Nobel 1975
Leonid Vitaliyevich Kantorovich, Tjalling C. Koopmans

Share this: G B E 7

The Sveriges Riksbank
Prize in Economic Sciences
in Memory of Alfred Nobel
1975

Leonid Vitaliyevich Tjalling C.
Kantorovich Koopmans
Prize share: 1/2 Prize share: 1/2

The Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel 1975 was awarded jointly to Leonid Vitaliyevich
Kantorovich and Tjalling C. Koopmans "for their contributions to the
theory of optimum allocation of resources"



homogeneous electron gas

Lt }
Z/dk Ck aCka 2(27T)3 Z/dk/dk/ dq —5 |q|2 Ck q.0“k'+q.0' “k' o' Ck .0

0,0’

Slater determinant of plane waves
") = 1] <10
k| <kr

no single-excitations (Brillouin condition)

density of electrons of spin o

ik-r |2 3
R “ K
o — CDHF WT V% CDHF — / dk © = _F

—/k r e—/k r

(A0, Geod = [ dr s 0, W)} = e




dispersion & DOS

guasiparticle energies

_ 2 dk _ L%y |
8/(,0’ 2 472 k' | < kr ‘k — k/‘2 2 T + 2/(/—_/( "

ke + k
ke — k

ke 4+ kN 7
ke — k

quasiparticle density-of-states

—1
D;"(e) = 4mk? deio = 41k k—ﬁiik—@+kﬂn
d dk Tk D ke k

2

HF —— "HF ——
nonint - nonint -

1.5
1 F
OSVLL
05 |
@

O_,

-0.5 |

0 0.5 1 1.5 0) 5 10 15 20 25 30
K/Kg density of states



exchange hole

diagonal of two-body density matrix

/‘écl,)(r, r) /_U(Q(r r')
/‘é,lg(r’, r) ) (r', r)

oo’

(Do 100, Y01 ()00 (1Y ()b ) = det (

one-body density matrix for like spins

e~ itk-(r=r) Sin X — X COS X
[oo(r, ') = / dk = 3n
77 k| < ke (2m)3 d X3

exchange hole

0. (r.0) — 1 — eV (P)Ve (Ve (1Y ()
o Ne(r)ne(r'
SINKer — Ker cos Ker °
= —9
(ker)?




exchange hole

(sin(kpr) — kercos(ker))®
(ker)®

g(0,0;r,0)—1=-09

n
=
O

©
-
N
=
O .
0
Jf
)
-
D

r/r



exchange energy

correction to Hartree energy due to antisymmetry
1 (rry—1 1 . (7, 0)—1
EX:—/drnU/dr’nag( ) :—/drn(,/drnag(r N)
2 r —r'| 2 r
N —
=N

exchange energy per electron of spin o

_47T”a/oodrr29(f,0)—1:_9-47;%/oodx(sinx—xcosx)Q: 3ke
2 Jo r 2k2  Jo

E

X Q

X ATt

=1/4




HF state as vacuum

CDHF H CkU\O
|k|<kge
cl |Pk.) =0 for |k| < ke

Cho|Pis) = O otherwise.

HF ground state acts as vacuum state for transformed operators

( t

_ ¢l for k| < ke
— O(ke—I|k|) ¢l + O(lk|—ke) ¢, = 4 o

Cka ( F | ’) CkU (I | F) Cka < fOI’ ’k’ > k/:

Cka

\

5k0‘quF> =0 {Cka Ck’a’} = 0= {Cka CI]:’J’}

(@l Ol S| {¢.. el = 06(k—k") 650

note: vacuum state no longer invariant under basis transformations!



BCS theory

BCS Hamiltonian

8 _ T Tt
ko kk’

Bogoliubov-Valatin operators mix creators & annihilators

canonical anticommutation relations
{be,, b} =0={bl_, bl .} and {b, ., bl .} = 6(k—kK)ds

fulfilled for |uk|2 + |vi|2 = 1

corresponding vacuum state?



BCS state

obvious candidate (product state in Fock-space)

|BCS> X H bka’0>
ko

need only consider groups of operators with fixed tk

b_ 1 Dy byrb_ i 10) = vie (Ui + i Cich,h) Vi (Uk + v C,]:TCL@) 0)

normalizable?

_ _ _ _ 2
(Ol (Uk+ViC_g) Coep) (T + Vi ey € ) Uk Vi€l r i ) (U viecprcl  )10) = (Jui >+ vie|?)

(normalized) vacuum

1
IBCS) = H V—kbka\0> = H(“k + vk C;ETCL(L) 0)
k k

contributions in all sectors with even number of electrons



electronic properties

momentum distribution

(BCS| ¢} ¢y IBCS) = (BCS|(ubjy + Vieh_ i ) (T b + vicb' . )IBCS) = |v|?

BCS wave function has amplitude in all even-N Hilbert spaces
pairing density
(BCS|cpcl 4 IBCS) = (BCS|(ukbjy + Vieb_y ) (ukb! y, — Vb, )IBCS) = Vi



minimize energy expectation value

energy expectation value

<BCS‘/:/—,LLN‘BCS Z(&‘k ,LL) ’Vk|2 Z Gkk’ VkUka/LIk/
k., k'

optimize phase

’Uk’ e'% and Vik = ’Vk| e(ator) oy RV U ViU = | ViU Vier U COS((pk/—(,Ok)

for attractive interaction energy minimized for phase coherent Cooper pairs:

BCS(p)) = H (Juk| + \vk!e"‘oc,zciki) 0)
k



gap equation

writing |ux| = sin ©x and |vk| = cos Oy

0S 20 SIN 260y SN 260
D Gk

(BCS(p)|H-pN[BCS(¢)) Z(gk —H) 1+C2 2 2

k,k’

variational equations
Zk’ Gkk’ sin(2@k/)/2 . Ak

tan 20, = —.
Ex— U KL — Ek
1
. . . 2
momentum distribution (cosx)® = I+ (tan x)?2
(s = v ‘2 14+ cos 260y 1 . Ex— U
ko) = [Vkl = — 5
‘ ] S/ o Eew

gap equations

Ak —Z Gkk’ SIﬂ(Q@k/)/Q — Z \/(5

Gk Ak
k—H)? + A,




quasi electrons

1
+|BCS) = b}, |BCS)

(unrelaxed) quasi-electron state k1) = C
k

quasi-particle energy
(k 1 |[H—pN|k 1) — (BCS|H—uN|BCS) = \/(ex—p)? 4 A2

2

A S l Ol ""l --------- 1
A 0.

A
A

0) 0.5 1 1.5 0) ) 10 15 20 25 30
K/Kg density of states



summary

indistinguishable electrons : HF —— HE —
Do, (Xl) Do (Xl) R Pay (Xl) (DHF H Cka‘o -
1 | Pau(X2)  Qar(x2) -0 Pay(x2) K| <ke )
VNI | A :
(pal (X/V) (pOl2 (X/V) U (pOL/\/ (X/\/)
(anti)symmetrization is hard
Slater determinants to the rescue A

0 0.5 1 1.5 0O 5 10 15 20 25 30
k/Kg density of states

c«|0) =0 {Ca,cﬁ}:O:{ci,cg}

b,. = UxCpr — vch
00)=1  {ca ci} =(alB) ol ol ;“

second quantization:
separate coordinates

€k " Bk

from state
IBCS) H bko|0)
extends to Fock space ko . . S
0 0.5 1 1.5 0 5 10 15 20 25 30
Z CJr nm Cp T Z CTC nn’,mm’ CrvCm k/kg density of states

nn’,mm’



