Orbital Ordering in materials

Eva Pavarini

Institute for Advanced Simulation

Forschungszentrum Jülich

spontaneous spin ordering

spin degrees of freedom: 2S+1

$$H_{SE}^{ii'} = J_{SS}S_i \cdot S_{i'} \qquad H = \frac{1}{2} \sum_{i,i'} H_{SE}^{ii'}$$

S=1/2, degenerate spin states

spontaneous spin ordering

MnO

FIG. 1. Neutron diffraction patterns for MnO at room temperature and at 80°K.

neutron scattering: Shull and Smart (1949)

spontaneous spin ordering

phase transition, order parameter

strongly-correlated materials

mechanism: super-exchange

$$\hat{H} = -t \sum_{\langle ii' \rangle} \sum_{\sigma} c^{\dagger}_{i\sigma} c_{i'\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

half filling (one electron per site)

 $H = \frac{1}{2} \sum_{i,i'} H_{SE}^{ii'} \qquad H_{SE}^{ii'} = J_{SS} S_i \cdot S_{i'}$

t/U small

S=1/2, *J*_{SS}=4*t*²/*U*

one-band Hubbard model

$$\hat{H} = -t \sum_{\langle ii' \rangle} \sum_{\sigma} c^{\dagger}_{i\sigma} c_{i'\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

sei 10 zero

ground state without hopping

first excited state without hopping

one-band Hubbard model

set to zero

one-band Hubbard model

hopping as perturbation

two sites, 4 states with E=0

result depends on spin arrangement

hops to doubly occupied states

$$\Delta E_{\uparrow\downarrow} \sim -\sum_{I} \langle \uparrow, \downarrow | H_{T} | I \rangle \langle I | \frac{1}{E(2) + E(0) - 2E(1)} | I \rangle \langle I | H_{T} | \uparrow, \downarrow \rangle \sim -\frac{2t^{2}}{U}.$$

$$= t \qquad 1/(E_{I}-E_{G})=1/U \qquad = t$$
(second-order perturbation theory)
energy gain

)H

no gain for FM arrangement

effective spin model

 $H_{SE}^{ii'} = J_{SS}S_i \cdot S_{i'}$

 $S=1/2, J_{SS}=4t^2/U$

high-T_c superconducting cuprates

VOLUME 87, NUMBER 4

PHYSICAL REVIEW LETTERS

23 JULY 2001

Band-Structure Trend in Hole-Doped Cuprates and Correlation with $T_{c \max}$

 E. Pavarini, I. Dasgupta,* T. Saha-Dasgupta,[†] O. Jepsen, and O. K. Andersen Max-Planck-Institut für Festkörperforschung, D-70506 Stuttgart, Germany (Received 4 December 2000; published 10 July 2001)

By calculation and analysis of the bare conduction bands in a large number of hole-doped hightemperature superconductors, we have identified the range of the intralayer hopping as the essential, material-dependent parameter. It is controlled by the energy of the axial orbital, a hybrid between Cu 4s, apical-oxygen $2p_z$, and farther orbitals. Materials with higher T_c max have larger hopping ranges and axial orbitals more localized in the CuO₂ layers.

00

0

 $O_c 2p_z$

Cu $3d_{3z^2-1}$

high-T_c superconducting cuprates (e_g^9)

high-T_c superconducting cuprates (e_g^9)

$$H = -\sum_{\sigma} \sum_{\langle ii' \rangle} t_{i,i'} c_{i\sigma}^{\dagger} c_{i'\sigma} + \sum_{i} U n_{i\uparrow} n_{i\downarrow}$$

effective low-energy models

emergent energy scale

mechanism: super-exchange

$$\hat{H} = -t \sum_{\langle ii' \rangle} \sum_{\sigma} c^{\dagger}_{i\sigma} c_{i'\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow}$$

half filling (one electron per site)

 $H = \frac{1}{2} \sum_{i,i'} H_{SE}^{ii'} \qquad H_{SE}^{ii'} = J_{SS} S_i \cdot S_{i'}$

t/U small

 $S=1/2, J_{SS}=4t^2/U$

spontaneous ordering of orbitals

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃

Exchange interaction in magnetic substances containing ions with orbital degeneracy is considered. It is shown that, among with spin ordering, superexchange also results in cooperative ordering of Jahn-Teller ion orbitals, which, generally speaking, occurs at a higher temperature and is accompanied by distortion of the lattice (which is a secondary effect here). Concrete studies are performed for substances with a perovskite structure (KCuF₃, LaMnO₃, MnF₃). The effective spin Hamiltonian is obtained for these substances and the properties of the ground state are investigated. The orbital and magnetic structure tures obtained in this way without taking into account interaction with the lattice are in accord with the structures observed experimentally. The approach employed also permits one to explain the strong anisotropy of the magnetic properties of these compounds and to obtain a reasonable estimate for the critical temperatures.

strong Coulomb repulsion (the Hubbard U)

+ orbitals degrees of freedom

= orbital super-exchange

LaMnO₃

orbital degrees of freedom

degenerate *e*_g orbitals

orbital degrees of freedom: holes

spontaneous ordering of orbitals

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃

LaMnO₃

Exchange interaction in magnetic substances containing ions with orbital degeneracy is considered. It is shown that, among with spin ordering, superexchange also results in cooperative ordering of Jahn-Teller ion orbitals, which, generally speaking, occurs at a higher temperature and is accompanied by distortion of the lattice (which is a secondary effect here). Concrete studies are performed for substances with a perovskite structure (KCuF₃, LaMnO₃, MnF₃). The effective spin Hamiltonian is obtained for these substances and the properties of the ground state are investigated. The orbital and magnetic structure tures obtained in this way without taking into account interaction with the lattice are in accord with the structures observed experimentally. The approach employed also permits one to explain the strong anisotropy of the magnetic properties of these compounds and to obtain a reasonable estimate for the critical temperatures.

orbital super-exchange

 $H_{SE}^{ii'} = J_{SS}S_i \cdot S_{i'} + J_{OO}O_iO_{i'} + J_{SO}(O_iO_{i'})(S_i \cdot S_{i'})$

orbital degrees of freedom: degenerate Cu eg orbitals

shown: empty e_g orbital (hole orbital) at each site

orbital ordering

Page 2 of about 39,500 results (0.33 seconds)

xotic Spin Order due to Orbital Fluctuations

rbital order, with entangled spin-orbital phases at the crossover ...

ww.fkf.mpg.de/561365/Pavarini.pdf
Max Planck Societ

ww.sciencedirect.com/science/.../S0038109812004413

M Dhariwal - 2012 - Cited by 1 - Related articles

Y Z Nussinov - Cited by 80 - Related articles

^{PFJ} The nature of orbital order in transition-metal oxides

rder plays a crucial role in the physicis of trasition-metal oxides, and yet its.

I 8, 2014 - In each case we find strong competition between different types of spin and

orbital order in transition-metal oxides. Eva Pavarini (FZ Jülich, Germany). Orbital

)rbital order in NaTiO2: A first principles study - ScienceDirect

bstract. The debate over the orbital order in the layered triangular lattice system

aTiO2 has been rekindled by the recent experiments of McQueen et al. [Phys.

^{PF]} Orbital order in classical models of transition-metal ... ww.math.ucla.edu/.../Orbital-Lette... |▼| University of California, Los Angeles ▼

fect on excited 4p states [8]. The case for orbital ordering has been

sonant X-ray scattering techniques in which the 3d orbital order is detected by its

rxiv.org > cond-mat 💌 arXiv 👻

VW Brzezicki - 2014

PHYSICAL REVIEW LETTERS

Orbital Liquid in Three-Dimensional Mott Insulator: LaTiO₃

G. Khaliullin^{1,2} and S. Maekawa² ¹Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany ²Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

(Received 5 June 2000) We present a theory of spin and orbital states in Mott insulator LaTiO₃. The spin-orbital superexchange

interaction between $d^1(t_{2g})$ ions in cubic crystal suffers from a pathological degeneracy of orbital states

at the classical level. Quantum effects remove this degeneracy and result in the formation of the coherent

ground state, in which the orbital moment of t_{2g} level is fully quenched. We find a finite gap for orbital

excitations. Such a disordered state of local degrees of freedom on unfrustrated, simple cubic lattice is

highly unusual. Orbital liquid state naturally explains observed anomalies of LaTiO₃.

[PDF] Origin of Orbital Order in KCuF3 and LaMnO3 - German ...

30 OCTOBER 2000

er in ... - arXiv...

2+ 6s6p orbital

reversal of the ...

ital order in

sults ...

each Fermi pocket, the

CORRELATED ELECTRON SYSTEMS

REVIEW

Orbital Physics in Transition-Metal Oxides

Y. Tokura^{1,2} and N. Nagaosa¹

An electron in a solid, that is, bound to or nearly localized on the specific atomic site, has three attributes: charge, spin, and orbital. The orbital represents the shape of the electron cloud in solid. In transition-metal oxides with anisotropic-shaped d-orbital electrons, the Coulomb interaction between the electrons (strong electron correlation effect) is of importance for understanding their metal-insulator transitions and properties such as high-temperature superconductivity and colossal magnetoresistance. The orbital degree of freedom occasionally plays an important role in these phenomena, and its correlation and/or order-disorder transition causes a variety of phenomena through strong coupling with charge, spin, and lattice dynamics. An overview is given here on this "orbital physics," which will be a key concept for the science and technology of correlated electrons.

When more than two orbitals are involved, a variety of situations can be realized, and this quantum mechanical process depends on the orbitals (4, 5). In this way, the spin \vec{S} and the orbital pseudospin \vec{T} are coupled. In more general cases, the transfer integral t_{ij} depends on the direction of the bond ij and also on the pair of the two orbitals $a_i h = (x^2 - y^2)$ or

 $(3z^2)$

of the

well a

transf

Mn at

NEWS & VIEWS

Electronic reconstruction at an interface between a Mott insulator and a band insulator

Article

Satoshi Okamoto & Andrew J. Millis

urtment of Physics, Columbia University 538 West 120th Street, New York, York 10027, USA

VOLUME 85, NUMBER 18

face science is an important and well-established branch of erials science involving the study of changes in material

TRANSITION METAL OXIDES

Ferroelectricity driven by orbital order

The discovery that the rotation of the orbital arrangement in manganites induces ferroelectricity exposes an intriguing phase transition that could serve as a blueprint for novel applications.

BERNHARD KEIMER is at the Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany e-mail: B.Keimer@fkf.mpg.d

ransition metal oxides have fascinated scientists since the 1950s, when the newly developed technique of neutron diffraction was used to show that the compound La_{1.2}Ca₂MnO₂ exhibits a rich variety of structural and magnetic phases as the Ca concentration is tuned'. The fascination has increased in the wake of the discovery of high-temperature superconductivity in a chemically similar compound,

Figure 1 Possible arrangements of Mn^{to} d-orbitals on a square lattice. The patterns are two-dimensional versions of orbitally ordered states actually observed in manganese oxides The corresponding magnetic states are indicated by yellow arrows.

ferromagnetism in YTiO₃

https://doi.org/10.1038/s41586-023-05853-8 Received: 13 November 2021 Accepted: 16 February 2023 A. S. Disa^{1,2}, J. Curtis^{3,4}, M. Fechner¹, A. Liu¹, A. von Hoegen¹, M. Först¹, T. F. Nova¹, P. Narang^{3,4}, A. Maljuk⁵, A. V. Boris⁶, B. Keimer⁶ & A. Cavalleri^{1,7}

Published online: 3 May 2023

ary 2023 In quantum

Photo-induced high-temperature

In quantum materials, degeneracies and frustrated interactions can have a profound

522orbital+orde

orbital physics

Review—Orbital Physics: Glorious Past, Bright Future

D. I. Khomskii^z

II. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany

Transition metal (TM) compounds present a very big class of materials with quite diverse properties. There are insulators, metals and systems with insulator-metal transitions among them; most magnetic systems are TM compounds; there are also (high- T_c) superconductors among them. Their very rich properties are largely determined by the strong interplay of different degrees of freedom: charge; spin; orbital; lattice. Orbital effects play a very important role in these systems—and not only in them! The study of this field, initiated by Goodenough almost 70 years ago, turned out to be very fruitful and produced a lot of important results. In this short review I discuss the basics of orbital physics and summarize the main achievements in this big field, in which Goodenough played a pivotal role, and which are nowadays widely used to explain many properties of TM compounds. In the main part of the text I discuss novel developments and perspectives in orbital physics, which is still a very active field of research, constantly producing new surprises.

© 2022 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/2162-8777/ ac6906]

Manuscript submitted November 16, 2021; revised manuscript received January 3, 2022. Published May 3, 2022. *This paper is part of the JES/JSS Joint Focus Issue In Honor of John Goodenough: A Centenarian Milestone*.

Daniel Khomskii

John Goodenough

orbital ordering

orbital analogous of spin ordering

via orbital (KK) super-exchange

 $H_{SE}^{ii'} = J_{SS}S_i \cdot S_{i'} + J_{OO}O_iO_{i'} + J_{SO}(O_iO_{i'})(S_i \cdot S_{i'})$

but there is a difference: orbitals are strongly coupled to the lattice

OO can yield lattice distortions

alternating long and short CuF bonds

the distortion is the hallmark of orbital ordering

alternating long and short CuF bonds

another possibility: distortions yield order

the distortion is the hallmark of orbital ordering

alternating long and short CuF bonds

why? Jahn-Teller theorem

Stability of Polyatomic Molecules in Degenerate Electronic States I—Orbital Degeneracy

BY H. A. JAHN, Davy-Faraday Laboratory, The Royal Institution AND E. TELLER, George Washington University, Washington, D.C.*

(Communicated by F. G. Donnan, F.R.S.-Received 17 February 1937)

INTRODUCTION

In the following we investigate the conditions under which a polyatomic molecule can have a stable equilibrium configuration when its electronic state has orbital degeneracy, i.e. degeneracy not arising from the spin. We shall show that stability and degeneracy are not possible simultaneously unless the molecule is a linear one, i.e. unless all the nuclei in the equilibrium configuration lie on a straight line. We shall see also that the instability is only slight if the degeneracy is due solely to electrons having no great influence on the binding of the molecule.

lattice distortions generate order

J. Appl. Phys. 31, S14-S23 (1960)

Crystal Distortion in Magnetic Compounds

JUNJIRO KANAMORI* Institute for the Study of Metals, University of Chicago, Chicago 37, Illinois

The crystal distortion which arises from the Jahn-Teller effect is discussed in several examples. In the case of compounds containing Cu^{2+} or Mn^{3+} at octahedral sites, the lowest orbital level of these ions is doubly degenerate in the undistorted structure, and there is no spin-orbit coupling in this level. It is shown that, introducing a fictitious spin to specify the degenerate orbital states, we can discuss the problem by analogy with the magnetic problems. The "ferromagnetic" and "antiferromagnetic" distortions are discussed in detail. The transition from the distorted to the undistorted structure is of the first kind for the former and of the second kind for the latter. Higher approximations are discussed briefly. In compounds like FeO, CoO, and CuCr₂O₄, the lowest orbital level is triply degenerate, and the spin-orbit coupling is present in this level. In this case the distortion is dependent on the magnitude of the spin-orbit coupling relative to the strength of the Jahn-Teller effect term. The distortion at absolute zero temperature and its temperature dependence are discussed.

electron-phonon coupling

static crystal-field splitting (symmetry lowering)

degenerate Cu e_g orbitals

 ΔE

shown: empty eg orbital (hole orbital) at each site

materials: a chicken-and-egg problem

how to disentangle the two? which mechanism dominates when?

orbital ordering in materials

rest of lecture KCuF₃

- introduce KK super-exchange and electron-phonon coupling mechanisms for orbital ordering
- explain how to disentangle them in materials
- thermally-assisted ordering
- are there true KK systems?

Kugel-Khomskii theory

orbital ordering from super-exchange

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃ LaMnO₃

$$H = -\sum_{ii'} \sum_{mm'} \sum_{\sigma} t^{ii'}_{mm'} c^{\dagger}_{im\sigma} c_{i'm'\sigma} + U \sum_{i} \frac{1}{2} \sum_{m\sigma \neq m'\sigma'} n_{im\sigma} n_{im'\sigma'}$$

m: *degenerate e*^{*g*} *orbitals*

Mott insulators (U much larger than t): small t/U limit

 $H_{SE}^{ii'} = J_{SS}S_i \cdot S_{i'} + J_{OO}O_iO_{i'} + J_{SO}(O_iO_{i'})(S_i \cdot S_{i'})$

orbital ordering from super-exchange

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃ LaMnO₃

 $H = -\sum_{ii'} \sum_{mm'} \sum_{\sigma} t^{ii'}_{mm'} c^{\dagger}_{im\sigma} c_{i'm'\sigma} + U \sum_{i} \frac{1}{2} \sum_{m\sigma \neq m'\sigma'} n_{im\sigma} n_{im'\sigma'}$

m: *degenerate e*^{*g*} *orbitals*

how many orbital degrees of freedom?

spherical symmetry: d shell

I=2 5 degenerate states

the cubic crystal field

how do *d* levels split at the Cu site? point charge model

$$v_{\mathrm{R}}(\boldsymbol{r}) = \sum_{\alpha} \frac{q_{\alpha}}{|\boldsymbol{R}_{\alpha} - \boldsymbol{r}|} = v_{0}(r) + \sum_{\alpha \neq 0} \frac{q_{\alpha}}{|\boldsymbol{R}_{\alpha} - \boldsymbol{r}|} = v_{0}(r) + \frac{\boldsymbol{v}_{\boldsymbol{c}}(\boldsymbol{r})}{|\boldsymbol{R}_{\alpha} - \boldsymbol{r}|}$$

2 F¹⁻

small r=(x,y,z) expansion

F₆ octahedron of negative ions

$$v_{\rm oct}(\boldsymbol{r}) = \frac{35}{4} \frac{q_C}{a^5} \left(x^4 + y^4 + z^4 - \frac{3}{5}r^4 \right) = D\left(x^4 + y^4 + z^4 - \frac{3}{5}r^4 \right).$$

cubic crystal-field

in first order perturbation theory:

Cu²⁺ 3d⁹ $t_{2g}^{6}e_{g}^{3}$

d orbitals in cubic symmetry

(exact: group theory)

ideal cubic KCuF₃: electronic structure

large cubic CF splitting (~2 eV)

orbital ordering from super-exchange

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃ LaMnO₃

 $H = -\sum_{ii'} \sum_{mm'} \sum_{\sigma} t^{ii'}_{mm'} c^{\dagger}_{im\sigma} c_{i'm'\sigma} + U \sum_{i} \frac{1}{2} \sum_{m\sigma \neq m'\sigma'} n_{im\sigma} n_{im'\sigma'}$

m: *degenerate e*^{*g*} *orbitals*

ideal cubic KCuF₃: electronic structure

.. but is a large gap insulator, paramagnetic above 40 K!

we need the Hubbard U

$$H = -\sum_{ii'} \sum_{mm'} \sum_{\sigma} t^{ii'}_{mm'} c^{\dagger}_{im\sigma} c_{i'm'\sigma} + U \sum_{i} \frac{1}{2} \sum_{m\sigma \neq m'\sigma'} n_{im\sigma} n_{im'\sigma'}$$

missing: the Hund's rule J

Hund's rule ground state
$$=$$
 U-3J
U>3J

missing: the Hund's rule J

 $\hat{H} = -\sum \sum t_{mm'}^{i,i'} c_{im\sigma}^{\dagger} c_{im'\sigma} + \hat{H}_U$ $ii' \sigma mm'$

U: direct screened Coulomb integral
 J: exchange screened Coulomb integral

orbital ordering from super-exchange

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃ LaMnO₃

m: *degenerate e*^{*g*} *orbitals*

orbital ordering from super-exchange

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃ LaMnO₃

 $H = - \sum \sum t_{mm'}^{ii'} c_{im\sigma}^{\dagger} c_{i'm'\sigma} + \hat{H}_U$ mm' σ ii'

m: *degenerate e*^{*g*} *orbitals*

Mott insulators (U much larger than t): small t/U limit

let us set the hoppings to zero

$$H_{\text{T, set to zero}} = -\sum_{ii'} \sum_{mm'} \sum_{\sigma} t^{ii'}_{mm'} c^{\dagger}_{im\sigma} c_{i'm'\sigma} + \hat{H}_U$$

ground state: 1 hole per site

4 possible hole states

spin and pseudospin representation

eigenstates of:

$$S_z = \frac{1}{2}\sigma_z = \frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

S_i=1/2 m_S=1/2,-1/2

eigenstates of:

$$O_z = \frac{1}{2}\tau_z = \frac{1}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

 $O_i = 1/2$ $m_0 = 1/2, -1/2$

spin and pseudospin representation

 $(m_S, m_0) = (-1/2, 1/2)$

 $(m_S, m_0) = (1/2, 1/2)$

 $(m_S, m_0) = (-1/2, -1/2)$

 $(m_S, m_0) = (1/2, -1/2)$

let us set the hoppings to zero

cubic KCuF₃, ground state

4 states per site ($S \times 0 = 1/2 \times 1/2$)

let us switch on the hoppings

let us set the hoppings to zero

ground state

two-site problem, one hole per site

16 states with N_d=0

12 states with N_d=1

low-energy model: perturbation in t

$$\Delta E_G = -\sum_{I} \frac{|\langle \Psi_G | H_T | \Psi_I \rangle|^2}{E_I - E_0}$$

G=16 states with N_d=0

I=12 states with N_d=1

simplified hopping model

(intra-orbital hoppings only)

$$\hat{H}_T = -t \sum_{\sigma} \sum_{m} \sum_{i} c^{\dagger}_{im\sigma} c_{i'm\sigma}.$$

low-energy model: perturbation in t

two-site problem, one electron per site

Kugel-Khomskii super-exchange

$$\hat{H}_{SE}^{i,i'} = 2\Gamma_{-+} \left[\mathbf{S}^{i} \cdot \mathbf{S}^{i'} - \frac{1}{4} \right] \left[O_{z}^{i} O_{z}^{i'} + \frac{1}{4} \right] + 2\Gamma_{+-} \left[\frac{1}{4} + S_{z}^{i} S_{z}^{i'} \right] \left[\mathbf{O}^{i} \cdot \mathbf{O}^{i'} - \frac{1}{4} \right] \\ + 2\Gamma_{--} \left[\left(\mathbf{S}^{i} \cdot \mathbf{S}^{i'} - S_{z}^{i} S_{z}^{i'} \right) \left(\mathbf{O}^{i} \cdot \mathbf{O}^{i'} - O_{z}^{i} O_{z}^{i'} \right) - \left(S_{z}^{i} S_{z}^{i'} - \frac{1}{4} \right) \left(O_{z}^{i} O_{z}^{i'} - \frac{1}{4} \right) \right]$$

$$\Gamma_{-+} = \frac{4t^2}{U}$$
 $\Gamma_{+-} = \frac{4t^2}{U-3J}$ $\Gamma_{--} = \frac{4t^2}{U-2J}$

verify it!

G: $(m_{SA}, m_{OA}) = (1/2, -1/2) (m_{SB}, m_{OB}) = (1/2, 1/2)$

 $\begin{bmatrix} +1/2^{*}1/2 - 1/4 \end{bmatrix} = 0 \qquad 2 \begin{bmatrix} 1/4 + 1/2^{*}1/2 \end{bmatrix} \begin{bmatrix} -1/2^{*}1/2 - 1/4 \end{bmatrix} = -1/2$ $\hat{H}_{SE} = 2\Gamma_{-+} \begin{bmatrix} S^{A} \cdot S^{B} - \frac{1}{4} \end{bmatrix} \begin{bmatrix} O_{z}^{A} O_{z}^{B} + \frac{1}{4} \end{bmatrix} + 2\Gamma_{+-} \begin{bmatrix} \frac{1}{4} + S_{z}^{A} S_{z}^{B} \end{bmatrix} \begin{bmatrix} O^{A} \cdot O^{B} - \frac{1}{4} \end{bmatrix}$ $+ 2\Gamma_{--} \begin{bmatrix} \left(S^{A} \cdot S^{B} - S_{z}^{A} S_{z}^{B} \right) \left(O^{A} \cdot O^{B} - O_{z}^{A} O_{z}^{B} \right) - \left(S_{z}^{A} S_{z}^{B} - \frac{1}{4} \right) \left(O_{z}^{A} O_{z}^{B} - \frac{1}{4} \right) \end{bmatrix}$ $\begin{bmatrix} +1/2^{*}1/2 - 1/2 \ 1/2 \end{bmatrix} = 0 \qquad \begin{bmatrix} +1/2^{*}1/2 - 1/4 \end{bmatrix} = 0$

G-K rules

$$\hat{H}_{SE}^{i,i'} = 2\Gamma_{-+} \left[\mathbf{S}^{i} \cdot \mathbf{S}^{i'} - \frac{1}{4} \right] \left[O_{z}^{i} O_{z}^{i'} + \frac{1}{4} \right] + 2\Gamma_{+-} \left[\frac{1}{4} + S_{z}^{i} S_{z}^{i'} \right] \left[\mathbf{O}^{i} \cdot \mathbf{O}^{i'} - \frac{1}{4} \right] + 2\Gamma_{--} \left[\left(\mathbf{S}^{i} \cdot \mathbf{S}^{i'} - S_{z}^{i} S_{z}^{i'} \right) \left(\mathbf{O}^{i} \cdot \mathbf{O}^{i'} - O_{z}^{i} O_{z}^{i'} \right) - \left(S_{z}^{i} S_{z}^{i'} - \frac{1}{4} \right) \left(O_{z}^{i} O_{z}^{i'} - \frac{1}{4} \right) \right]$$

$$\Gamma_{-+} = \frac{4t^2}{U}$$
 $\Gamma_{+-} = \frac{4t^2}{U-3J}$ $\Gamma_{--} = \frac{4t^2}{U-2J}$

FM, AFO

orbital ordering from super-exchange

Crystal structure and magnetic properties of substances with orbital degeneracy

> K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃ LaMnO₃

$$H = \left[-\sum_{ii'} \sum_{mm'} \sum_{\sigma} t_{mm'}^{ii'} c_{im\sigma}^{\dagger} c_{i'm'\sigma} + \hat{H}_{U} \right] dominant$$

$$perturbation$$
I t/U limit (Mott insulator)
$$e_{g} degenerate$$
super-exchange Hamiltonian

smal

orbitals

verse runnullar

 $H_{SF}^{ii'} = J_{SS}S_{i} \cdot S_{i'} + J_{OO}O_{i}O_{i'} + J_{SO}(O_{i}O_{i'})(S_{i} \cdot S_{i'})$

realistic hoppings

ideal cubic KCuF₃

what are the hoppings here?

F-mediated hoppings

 $H = -\sum \sum \sum t_{mm'}^{ii'} c_{im\sigma}^{\dagger} c_{i'm'\sigma} + \hat{H}_U$ $ii' mm' \sigma$

not direct Cu-Cu hoppings

tight-binding two-center integrals

tight-binding model: 3z²-r²

tight-binding model eg bands: x²-y²

eg-p tight-binding model

$H_{e_g}^{\mathrm{TB}}$	$ m{k} z^c angle$	$ m{k} x^a angle$	$ m{k} \; y^b angle$	$ m{k} 3z^2 - r^2 angle$	$ m{k} x^2 - y^2 angle$
$ m{k} z^c angle$	$arepsilon_p$	0	0	$-2V_{pd\sigma}s_z$	0
$ m{k} x^a angle$	0	$arepsilon_p$	0	$V_{pd\sigma}s_x$	$-\sqrt{3}V_{pd\sigma}s_x$
$ m{k} \; y^b angle$	0	0	$arepsilon_p$	$V_{pd\sigma}s_y$	$\sqrt{3}V_{pd\sigma}s_y$
$ m k \ 3z^2 - r^2 angle $	$-2V_{pd\sigma}\overline{s}_z$	$V_{pd\sigma}\overline{s}_x$	$V_{pd\sigma}\overline{s}_y$	$arepsilon_d$	0
$ m{k} x^2 - y^2 angle$	0	$-\sqrt{3}V_{pd\sigma}\overline{s}_x$	$\sqrt{3}V_{pd\sigma}\overline{s}_y$	0	ε_d

$$\frac{H_{dd}^{\varepsilon}}{H_{dd}} = \frac{H_{dd}}{H_{dd}} - \frac{H_{dp}}{H_{dp}} (H_{pp} - \varepsilon I_{pp})^{-1} H_{pd}$$

$$s_{\alpha} = e^{-ik_{\alpha}a}\sin(k_{\alpha}a/2)$$

ideal cubic KCuF₃

what are the hoppings here?

effective d model

effective d-d hopping integrals (missing: longer range hoppings) Cu eg-like

$$\begin{array}{c|c} H_{e_g}^{\varepsilon} & |\mathbf{k} \, 3z^2 - r^2 \rangle_{\varepsilon} & |\mathbf{k} \, x^2 - y^2 \rangle_{\varepsilon} \\ \hline \mathbf{k} \, 3z^2 - r^2 \rangle_{\varepsilon} & \varepsilon_d' - 2t_{\varepsilon}^{\sigma} [\frac{1}{4} (\cos k_x a + \cos k_y a) + \cos k_z a] & 2t_{\varepsilon}^{\sigma} [\frac{\sqrt{3}}{4} (\cos k_x a - \cos k_y a)] \\ \hline \mathbf{k} \, x^2 - y^2 \rangle_{\varepsilon} & 2t_{\varepsilon}^{\sigma} [\frac{\sqrt{3}}{4} (\cos k_x a - \cos k_y a)] & \varepsilon_d' - 2t_{\varepsilon}^{\sigma} [\frac{3}{4} (\cos k_x a + \cos k_y a)] \end{array}$$

$$t_{\varepsilon}^{\sigma} = \frac{V_{pd\sigma}^2}{\varepsilon - \varepsilon_p}, \quad \varepsilon_d' = \varepsilon_d + 3t_{\varepsilon}^{\sigma}.$$

$$t_{mm'}^{i,i\pm\hat{z}} = t_{\varepsilon} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad t_{mm'}^{i,i\pm\hat{x}} = t_{\varepsilon} \begin{pmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix} \qquad t_{mm'}^{i,i\pm\hat{y}} = t_{\varepsilon} \begin{pmatrix} \frac{3}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix}$$

x²-y²

<u>3z²-r²</u>

Kugel-Khomskii super-exchange (J=0)

$$\hat{H}_{\rm SE}^{\hat{z}} = \frac{\Gamma}{2} \sum_{ii'} \left[\boldsymbol{S}^{i} \cdot \boldsymbol{S}^{i'} - \frac{n_{i}n_{i'}}{4} \right] \left[O_{z}^{i} - \frac{n_{i}}{2} \right] \left[O_{z}^{i'} - \frac{n_{i'}}{2} \right] + \frac{1}{2} \left[O_{z}^{i}O_{z}^{i'} - \frac{n_{i}n_{i'}}{4} \right],$$

other dirs: rotate axis

General Super Exchange Hamiltonians

PHYSICAL REVIEW B 105, 115104 (2022)

General superexchange Hamiltonians for magnetic and orbital physics in e_g and t_{2g} systems

Xue-Jing Zhang,¹ Erik Koch,^{1,2} and Eva Pavarini^{1,2,*}

¹Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany ²JARA High-Performance Computing, 52062 Aachen, Germany.

(Received 6 December 2021; accepted 16 February 2022; published 3 March 2022)

Material-specific super-exchange Hamiltonians are the key to studying spin and orbital physics in strongly correlated materials. Recently, via an irreducible-tensor operator representation, we derived the orbital superexchange Hamiltonian for t_{2g}^1 perovskites and successfully used it, in combination with many-body approaches, to explain orbital physics in these systems. Here, we generalize our method to e_g^n and t_{2g}^n systems at arbitrary integer filling *n*, including both spin and orbital interactions. The approach is suitable for numerical implementations based on *ab initio* hopping parameters and realistic screened Coulomb interactions and allows for a systematic exploration of superexchange energy surfaces in a realistic context.

DOI: 10.1103/PhysRevB.105.115104

General Super Exchange Hamiltonians

PHYSICAL REVIEW B 105, 115104 (2022)

General superexchange Hamiltonians for magnetic and orbital physics in e_g and t_{2g} systems

Xue-Jing Zhang,¹ Erik Koch,^{1,2} and Eva Pavarini^{1,2,*}

¹Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany ²JARA High-Performance Computing, 52062 Aachen, Germany.

ZHANG, KOCH, AND PAVARINI

PHYSICAL REVIEW B 105, 115104 (2022)

TABLE I. Key tensor elements for the e_g^1 and e_g^3 configuration and spin ranks q = 0 and 1. The elements for the e_g^3 configuration are obtained setting a minus in front of all linear terms, i.e., those for which r = 0, $r' \neq 0$, or r' = 0, $r \neq 0$. The elements for imaginary tensors must be multiplied by *i* (linear terms, involving a single operator) or $i \times i$ (for products of two operators). The prefactors are obtained from the weights: $v_0 = \frac{1}{2}(f_1 - f_{-1})$, $v_1 = \frac{1}{2}(f_1 + f_{-1})$, $v_2 = \frac{1}{4}(3f_{-3} + f_{-1})$, and $v_3 = \frac{1}{2}(3f_{-3} - f_{-1})$. The rest of the matrix elements are given by symmetry: $D_{r'\mu',r\mu}^{ij} = s_{\mu}s_{\mu'}\overline{D_{r\mu,r'\mu'}}^{ji}$, where $s_{\mu} = 1$ is for real operators and $s_{\mu} = -1$ for imaginary ones. Since the model is rotationally invariant for spins, q = 1, v = x, y, z elements are identical. They can be obtained from the table for q = 0, replacing $\mathcal{V}_0 \longrightarrow \tilde{\mathcal{V}}_0$, $\mathcal{V}_1 \longrightarrow \tilde{\mathcal{V}}_1$, $\mathcal{V}_2 \longrightarrow \tilde{\mathcal{V}}_2$, and $\mathcal{V}_3 \longrightarrow \tilde{\mathcal{V}}_3$. All hopping integrals are defined as $t_{m,m'}^{i,j}$ and are assumed to be real, as typically is the case in the absence of spin-orbit interaction.

	e_g	e_g^3	$D^{\prime _J}_{r\mu ,r'\mu '} imes U/2$			
0 <i>s</i>	$-\mathcal{V}_0$	$-\mathcal{V}_0$	$\left(t_{3z^2-r^2,3z^2-r^2}^2+t_{x^2-y^2,x^2-y^2}^2+t_{3z^2-r^2,x^2-y^2}^2+t_{x^2-y^2,3z^2-r^2}^2\right)$			
1 z	$-\mathcal{V}_1$	$+\mathcal{V}_1$	$\left(t_{3z^2-r^2,3z^2-r^2}^2 - t_{x^2-y^2,x^2-y^2}^2 + t_{x^2-y^2,3z^2-r^2}^2 - t_{3z^2-r^2,x^2-y^2}^2\right)$			
1 <i>x</i>	$-\mathcal{V}_1$	$+\mathcal{V}_1$	$2(t_{3z^2-r^2,3z^2-r^2}t_{3z^2-r^2,x^2-y^2}+t_{x^2-y^2,x^2-y^2}t_{x^2-y^2,3z^2-r^2})$			
1 z	$+\mathcal{V}_2$	$+\mathcal{V}_2$	$\left(t_{3z^2-r^2,3z^2-r^2}^2+t_{x^2-y^2,x^2-y^2}^2-t_{3z^2-r^2,x^2-y^2}^2-t_{x^2-y^2,3z^2-r^2}^2\right)$			
1 <i>x</i>	$+\mathcal{V}_2$	$+\mathcal{V}_2$	$2(t_{3z^2-r^2,3z^2-r^2}t_{x^2-y^2,x^2-y^2}+t_{3z^2-r^2,x^2-y^2}t_{x^2-y^2,3z^2-r^2})$			
1 <i>x</i>	$+\mathcal{V}_2$	$+\mathcal{V}_2$	$2(t_{3z^2-r^2,3z^2-r^2}t_{3z^2-r^2,x^2-y^2}-t_{x^2-y^2,x^2-y^2}t_{x^2-y^2,3z^2-r^2})$			
1 y	$+\mathcal{V}_3$	$+\mathcal{V}_3$	$2(t_{3z^2-r^2,3z^2-r^2}t_{x^2-y^2,x^2-y^2}-t_{3z^2-r^2,x^2-y^2}t_{x^2-y^2,3z^2-r^2})$			
	$\mathcal{V}_0 = \frac{v_1 + v_2}{v_1 + v_2}$	$\frac{-2v_2}{2} = \frac{f_1 + 2f_{-1} + 3f_{-3}}{4},$	$\mathcal{V}_1 = \frac{v_1}{2} = \frac{f_1 + f_{-1}}{4},$			
	$\mathcal{V}_2 = \frac{2v_2 - v_1}{2} = \frac{3f_{-3} - f_1}{4}, \mathcal{V}_3 = \frac{v_0 + v_3}{2} = \frac{3f_{-3} - 2f_{-1} + f_1}{4}$					
$\tilde{\mathcal{V}}_0 = -\frac{f_1 + 2f_{-1} - f_{-3}}{4}, \tilde{\mathcal{V}}_1 = -\mathcal{V}_1, \tilde{\mathcal{V}}_2 = \frac{f_1 + f_{-3}}{4}, \tilde{\mathcal{V}}_3 = \frac{f_{-3} + 2f_{-1} - f_1}{4}$						
	0 s 1 z 1 x 1 z 1 x 1 x 1 x 1 y	$0 s \qquad -\mathcal{V}_{0}$ $1 z \qquad -\mathcal{V}_{1}$ $1 x \qquad -\mathcal{V}_{1}$ $1 z \qquad +\mathcal{V}_{2}$ $1 x \qquad +\mathcal{V}_{2}$ $1 x \qquad +\mathcal{V}_{2}$ $1 y \qquad +\mathcal{V}_{3}$ $\mathcal{V}_{0} = \frac{v_{1}+v_{2}}{2}$ $\mathcal{V}_{0} = -\frac{v_{1}+v_{2}}{2}$ $\mathcal{V}_{0} = -\frac{v_{1}+v_{2}}{2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

orbital ordering from super-exchange

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃ LaMnO₃

$$H = -\sum_{ii'} \sum_{mm'} \sum_{\sigma} t^{ii'}_{mm'} c^{\dagger}_{im\sigma} c_{i'm'\sigma} + \hat{H}_{U} \text{ dominant}$$

perturbation

small t/U limit (Mott insulator)

eg degenerate orbitals

super-exchange Hamiltonian

 $H_{SE}^{ii'} = J_{SS}S_i \cdot S_{i'} + J_{OO}O_iO_{i'} + J_{SO}(O_iO_{i'})(S_i \cdot S_{i'})$

orbital ordering from distortions

lattice distortions generates order

J. Appl. Phys. 31, S14-S23 (1960)

Crystal Distortion in Magnetic Compounds

JUNJIRO KANAMORI* Institute for the Study of Metals, University of Chicago, Chicago 37, Illinois

The crystal distortion which arises from the Jahn-Teller effect is discussed in several examples. In the case of compounds containing Cu^{2+} or Mn^{3+} at octahedral sites, the lowest orbital level of these ions is doubly degenerate in the undistorted structure, and there is no spin-orbit coupling in this level. It is shown that, introducing a fictitious spin to specify the degenerate orbital states, we can discuss the problem by analogy with the magnetic problems. The "ferromagnetic" and "antiferromagnetic" distortions are discussed in detail. The transition from the distorted to the undistorted structure is of the first kind for the former and of the second kind for the latter. Higher approximations are discussed briefly. In compounds like FeO, CoO, and CuCr₂O₄, the lowest orbital level is triply degenerate, and the spin-orbit coupling is present in this level. In this case the distortion is dependent on the magnitude of the spin-orbit coupling relative to the strength of the Jahn-Teller effect term. The distortion at absolute zero temperature and its temperature dependence are discussed.

electron-phonon coupling

static crystal-field splitting (symmetry lowering)

 ΔE

which phononic modes?

modes A and E couple to eg

(group theory)

Q₁ mode

$$Q_1 = u_1(q_1) + u_2(q_1) + u_4(q_1) + u_5(q_1)$$

$$\begin{array}{rcl} \boldsymbol{u}_1(q_1) &=& \frac{1}{\sqrt{4}}q_1(1,0,0) \\ \boldsymbol{u}_2(q_1) &=& -\frac{1}{\sqrt{4}}q_1(0,1,0) \\ \boldsymbol{u}_3(q_1) &=& (0,0,0) \\ \boldsymbol{u}_4(q_1) &=& -\frac{1}{\sqrt{4}}q_1(1,0,0) \\ \boldsymbol{u}_5(q_1) &=& \frac{1}{\sqrt{4}}q_1(0,1,0) \\ \boldsymbol{u}_6(q_1) &=& (0,0,0) \end{array}$$

$$q = \delta = \frac{1}{2} \frac{l-s}{l+s}$$

 \hat{U}_n^{PI}

mode Q₁

FORSCHUNGSZENTRUM

ideal JT potential

splitting via co-operative distortion

two-mechanisms, same type of ordering

do we need a large crystal-field?

VOLUME 92, NUMBER 17

PHYSICAL REVIEW LETTERS

week ending 30 APRIL 2004

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic $3d^1$ Perovskites

E. Pavarini,¹ S. Biermann,² A. Poteryaev,³ A. I. Lichtenstein,³ A. Georges,² and O. K. Andersen⁴

No! A 100 meV crystal-field is enough (W~3 eV)

orbital ordering in materials

a chicken-and-egg problem

how to disentangle the two? which mechanism dominates when?

KCuF₃ LDA+U: KK-like mechanism

Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators

A. I. Liechtenstein

Max-Planck-Institut für Festkörperforschung, D-70506 Stuttgart, Germany

V. I. Anisimov Institute of Metal Physics, GSP-170 Ekaterinburg, Russia

J. Zaanen Lorentz Institute for the Theoretical Physics, Leiden University, Leiden, The Netherlands (Received 15 May 1995)

The situation changes drastically if we allow for orbital polarization. Because *U* exceeds the bandwidth, the orbital sector is already strongly polarized (as are the spins) before the lattice is allowed to react. Overlooking some unimportant details concerning the coherence of the intermediate states, the well-known rule that electronic MFT in strong coupling maps onto the classical "spin" problem holds also in this case. In other words, we find the quadrupolar orbital-ferromagnetic spin phase to be most stable (for the same reasons as Kugel and Khomskii^o). Obviously the cubic lattice is unstable in the presence of this orbital order parameter. In fact, despite large-scale changes in the electronic system the deformation is modest, indicating a rather weak electron-phonon coupling.

KCuF₃ LDA+U: KK-like mechanism

• however LDA+U can only describe magnetic phase

energy gain ~ 175 meV

DMFT para and LDA+U AFM give similar results

KK is the mechanism: Too ~TKK

...or, is it ?

- why T_N (40K-140K) much smaller than T_{JT} (800-1400 K)?
- total energy does not distinguish mechanisms

Our idea:

- single out Kugel-Khomskii mechanism
- calculate T_{KK} directly

idea: single out super-exchange

PRL 101, 266405 (2008)

PHYSICAL REVIEW LETTERS

week ending 31 DECEMBER 2008

FORSCHUNGSZENTRUM

Mechanism for Orbital Ordering in KCuF₃

E. Pavarini,¹ E. Koch,¹ and A. I. Lichtenstein²

¹Institut für Festkörperforschung and Institute for Advanced Simulation, Forschungzentrum Jülich, 52425 Jülich, Germany ²Institute of Theoretical Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany (Received 18 August 2008; published 31 December 2008)

The Mott insulating perovskite KCuF₃ is considered the archetype of an orbitally ordered system. By using the local-density approximation+dynamical mean-field theory method, we investigate the mechanism for orbital ordering in this material. We show that the purely electronic Kugel-Khomskii super-exchange mechanism alone leads to a remarkably large transition temperature of $T_{\rm KK} \sim 350$ K. However, orbital order is experimentally believed to persist to at least 800 K. Thus, Jahn-Teller distortions are essential for stabilizing orbital order at such high temperatures.

DOI: 10.1103/PhysRevLett.101.266405

PACS numbers: 71.10.Fd, 71.10.Hf, 71.27.+a

LDA+DMFT with Wannier functions

VOLUME 92, NUMBER 17

Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic 3d¹ Perovskites

PHYSICAL REVIEW LETTERS

E. Pavarini,¹ S. Biermann,² A. Poteryaev,³ A. I. Lichtenstein,³ A. Georges,² and O. K. Andersen⁴

week ending

30 APRIL 2004

Dynamical Mean-Field Theory of Correlated Electron

flexible and efficient solvers

self-energy matrix in spin-orbital space

+
$$U \sum_{im} n_{im\uparrow} n_{im\downarrow}$$

+ $\frac{1}{2} \sum_{im\neq m'\sigma\sigma'} (U - 2J - J\delta_{\sigma\sigma'}) n_{im\sigma} n_{im'\sigma'}$
- $J \sum_{m\neq m'} (c^{\dagger}_{m\uparrow} c^{\dagger}_{m'\downarrow} c_{m'\uparrow} c_{m\downarrow} + c^{\dagger}_{m\uparrow} c^{\dagger}_{m\downarrow} c_{m'\uparrow} c_{m'\downarrow})$

DMFT and cDMFT generalized quantum impurity solvers: general HF QMC general CT-INT QMC general CT-HYB QMC

 $H = -\sum \sum \sum t_{mm'}^{ii'} c_{im\sigma}^{\dagger} c_{i'm'\sigma}$

ii' mm'

 CT-HYB: A. Flesch, E. Gorelov, E. Koch and E. Pavarini Phys. Rev. B 87, 195141 (2013)

- + CT-INT: E. Gorelov et al, PRL 104, 226410 (2010)
- CT-INT+SO: G. Zhang, E. Gorelov, E. Sarvestani, and E. Pavarini, Phys. Rev. Lett. 116, 106402 (2016)

sign problem: smart adapted basis choice

the KK mechanism in KCuF₃

$T_{KK} \ll T_{00} > 1400 \, K$

reminder: mean field theory overestimates T_{KK}

spontaneous ordering of orbitals

Crystal structure and magnetic properties of substances with orbital degeneracy

K. I. Kugel' and D. I. Khomskii P. N. Lebedev Physics Institute (Submitted November 13, 1972) Zh. Eksp. Teor. Fiz. 64, 1429-1439 (April 1973)

KCuF₃

Exchange interaction in magnetic substances containing ions with orbital degeneracy is considered. It is shown that, among with spin ordering, superexchange also results in cooperative ordering of Jahn-Teller ion orbitals, which, generally speaking, occurs at a higher temperature and is accompanied by distortion of the lattice (which is a secondary effect here). Concrete studies are performed for substances with a perovskite structure (KCuF₃, LaMnO₃, MnF₃). The effective spin Hamiltonian is obtained for these substances and the properties of the ground state are investigated. The orbital and magnetic structure tures obtained in this way without taking into account interaction with the lattice are in accord with the structures observed experimentally. The approach employed also permits one to explain the strong anisotropy of the magnetic properties of these compounds and to obtain a reasonable estimate for the critical temperatures.

strong Coulomb repulsion (the Hubbard U)

+ orbitals degrees of freedom

= orbital super-exchange

LaMnO₃

LaMnO₃ : *T_{KK}* ~ 600 K !!

Phys. Rev. Lett. 104, 086402 (2010)

KK-only candidates

eg systems

ReMnO₃

KCrF₃

is KCuF₃ really JT?

order parameter decreases with increasing T

the distortion q increases with T

re-plot the (GGA+U) mexican hat

the T-dependence is via the lattice constant!

PHYSICAL REVIEW B 96, 054107 (2017)

Thermally assisted ordering in Mott insulators

Hunter Sims,¹ Eva Pavarini,^{2,3} and Erik Koch^{1,2,3,*}

¹Computational Materials Science, German Research School for Simulation Sciences, 52425 Jülich, Germany ²Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany ³JARA High-Performance Computing, 52425 Jülich, Germany (Received 16 November 2016; revised manuscript received 19 July 2017; published 8 August 2017)

Landau theory describes phase transitions as the competition between energy and entropy: The ordered phase has lower energy, while the disordered phase has larger entropy. When heating the system, ordering is reduced entropically until it vanishes at the critical temperature. This picture implicitly assumes that the energy difference between the ordered and disordered phases does not change with temperature. We show that for orbital ordering in the Mott insulator KCuF₃, this assumption fails qualitatively: entropy plays a negligible role, while thermal expansion energetically stabilizes the orbitally ordered phase to such an extent that no phase transition is observed. To understand this strong dependence on the lattice constant, we need to take into account the Born-Mayer repulsion between the ions. It is the latter, and not the Jahn-Teller elastic energy, which determines the magnitude of the distortion. This effect will be seen in all materials where the distortion expected from the Jahn-Teller mechanism is so large that the ions would touch. Our mechanism explains not only the absence of a phase transition in KCuF₃, but even suggests the possibility of an *inverted* transition in closed-shell systems, where the ordered phase emerges only at high temperatures.

KK-only candidates

eg systems

 $t_{2g}^{6}e_{g}^{3}$

 $t_{2g}^{3}e_{g}^{1}$

*t*_{2g} systems at low temperature?

larger orbital degeneracy, weaker electron-lattice coupling, smaller crystal-field coupling

change of orbitals at low T?

 $\Psi = \text{occupied or hole orbital}$ $= \sin \theta \cos \phi |xz\rangle + \cos \theta |xy\rangle + \sin \theta \sin \phi |yz\rangle.$

the first clear case: LaVO₃

PHYSICAL REVIEW B 106, 115110 (2022)

 $|\theta,\phi\rangle_{\rm KK}$ $\ket{ heta, \phi}_{\mathsf{CF}}$ LaVO₃: A true Kugel-Khomskii system Xue-Jing Zhang,¹ Erik Koch,^{1,2} and Eva Pavarini^{1,2} nstitute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Gern ²JARA High-Performance Computing, 52062, Aachen, Germany. R: PM \odot AF \odot \odot m(T) I₀: PM m(T) (LJW0.5 d 1₀ R R 0

500

T (K)

1000

0

 $T_{KK} T_N$

conclusion: mechanisms

super-exchange interaction

purely electronic coupling 4t²/U

lattice distortions

coulomb-enhanced crystal-field splitting

materials: pure KK systems are rare

however, materials are complex

KBF₃ K₂BF₄ ReMnO₃ ReTiO₃

super-exchange strong but alone cannot explain T_{OO}

static splitting essential

thermal-assisted ordering

thank you!