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15.2 Thomas Ayral

1 Introduction: why quantum computers for
dynamical mean-field theory?

Quantum computers were originally proposed to solve the challenges met by classical comput-
ers to tackle the quantum many-body problem [1]. One famous representative of these problems
is the Fermi-Hubbard model [2]

H = ZtijcgacjajLUZniTnu—,uZn,», (1)
ij,o i i
which describes the competition between a kinetic term with hopping amplitudes ¢;; that fa-
vors delocalized states, and an interaction term with interaction strength U that favors localized
states, with extra complexity coming from the possibility to tune the average density using
a chemical potential p. Here, creation (resp. annihilation) operators CIU (resp. ¢;,) create elec-
trons of spin o =7, | on lattice site ¢, and n;, = cjgcw, n; = n;++n,;. Among other reasons, the
purported relation between this model and the physics of high-temperature cuprate supercon-
ductors spurred early and prolonged interest into the phase diagram of this model, with phases
as diverse as Fermi liquids, Mott insulators, superconductors or charge density insulators.

In particular, one central object to elucidate these phase diagrams is the so-called spectral func-
tion A(k,w), a quantity that is accessible via, e.g., angle-resolved photoemission experiments:
its momentum k and energy w dependence contains distinctive features of the aforementioned
phases. From a computational point of view, the spectral function can be computed from the

imaginary part of the retarded Green function G*(k,w) (A(k,w) = — Im G®(k,w)), itself
defined as the space and time Fourier transform of the following sum of correlation functions
GR(i, j;t) = O(t) (—2’<ci(t)c;> - i<c}ci(t)>> . )

Here, the average denotes (---) = - Tr (e™## ... ), with the partition function Z = Tr(e *#)
and the inverse temperature § = 1/7. Time-dependence is to be understood in the Heisen-

Hte, et In the zero-temperature limit, the average becomes (- - ) =

berg picture, ¢;(t) = €'
(Wl - - - |Wo), with &) the ground state of H. The retarded Green function describes how an
electron created at site j (c;) in the system (described by a Gibbs state at finite temperature or
the ground state at zero temperature) propagates to site ¢ for a time ¢, where it is annihilated
(and likewise for a hole, described by the second term). From this definition, one sees that
computing A(k,w) implies the ability to describe the time evolution of an electron or a hole in

a quantum system prepared in its Gibbs or ground state.

1.1 The difficulties of classical methods...and of quantum computers

Due to the many-body nature of the problem, traditional mean-field theories fail to properly
describe these states and their subsequent evolution: for instance, the Hartree-Fock method does
not capture Mott insulators because they cannot be described with single Slater determinants.
In other words, Hubbard physics is generally not described well by single-particle physics:



DMFT with Quantum Computing 15.3

correlations (essentially entanglement beyond the trivial entanglement required by the Pauli
principle) play an important role. This warrants the use of more sophisticated classical methods.
These are either exact, but with a cost exponential in some parameter (like the system size in
exact diagonalization or some quantum Monte Carlo methods)—or approximate, and therefore
limited to certain regimes (think of tensor networks, which are limited to weakly entangled
states).

These limitations (some of which were known when quantum computers were first proposed)
make processors with quantum properties—commonly called quantum computers or quantum
simulators—ideal candidates for computing the spectral function: if these many-body systems
can be engineered or programmed to follow similar dynamics to Hubbard dynamics, the time
evolution of the processor will require resources than scale, at least at face value, only linearly
with the size of the system and evolution time: to reach, say, larger lattice sizes, one just has
to add more “particles” (or quantum bits, as we shall call them), and perform longer time evo-
lutions. . . raising hope for exponential speedups to perform time evolutions. Several quantum
algorithms, which we will explain in this lecture, were proposed to exploit this fact.

However, as we shall see, quantum algorithms are subject to strong constraints inherent to their
quantum nature. A major constraint, which became obvious with the advent of physical realiza-
tions of quantum computers in the last decade, is decoherence, namely unwanted entanglement
with the outside environment. Decoherence places hard limitations on the duration (number
of operations) of quantum algorithms, which rules out many textbook quantum algorithms if
no countermeasures are taken. It can possibly be suppressed with quantum error correction
techniques, but these in turn require formidable resources that will remain out of the reach of
quantum processors for many years. Worse still, even in the absence of decoherence, the local
nature of available operators and measurements, and the projective nature of the latter, also need
to be taken into consideration when designing a quantum algorithm, and when comparing it to
classical counterparts. Finally, even on a complexity-theoretic level, preparing ground states
or low-temperature states of many-body systems is likely hard (that is, exponential) even for
perfect quantum computers.

Quantum processors are therefore not to be considered a silver bullet to solve strongly-correlated
models like the Hubbard model, but rather as powerful heuristics that could outperform classical
heuristics in some difficult regimes whose precise delineations yet need to be determined. .. One
should perhaps even consider quantum processors as coprocessors to be used in combination
with classical heuristics to reach regimes hitherto inaccessible to either classical or quantum
algorithms: in the same way as graphics processing units (GPUs) are now used routinely to
speed up some linear algebra operations, quantum processing units (QPUs) could be used to
accelerate some well-defined subroutines of an otherwise classical program.

1.2 A method to reduce the complexity of the problem

One very successful classical heuristic for tackling the Hubbard model is dynamical mean-field
theory (DMFT, [3]). It maps the Hubbard model to a simpler, yet still many-body problem
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Fig. 1: DMFT self-consistency cycle: a lattice model (here the Hubbard model) is self-
consistently mapped to an impurity model, defined by its hybridization function A(w). This
impurity model can be represented with an Anderson impurity Hamiltonian describing a cor-
related impurity site coupled to noninteracting bath sites (right). Quantum processors can be
used to solve the impurity model, namely compute its Green function Giy,,(w).

called an impurity model. This impurity model describes one (or a few) interacting fermionic
sites embedded in a noninteracting environment. The properties of this environment are adjusted
to have the Green function of the impurity Glmp( w) match the local component of the lattice
Green function G}},(w) = >_, G®(k,w). This mapping is exact only in the limit of lattices of
infinite dimensions thanks to the local nature of the Hubbard interaction, but DMFT is typically
used in lower dimensions. Yet, it is able, among other successes, to capture the Fermi-liquid
to Mott-insulator transition. Perhaps more importantly, DMFT comes with a control parameter,
the number N, of correlated sites (also called the size of the impurity “cluster’”) of the impurity
model: it becomes exact in the limit of infinite N.; gradually increasing N, until convergence
of quantitites of interest provides a well-defined way of quantifying errors.

Over the years, very sophisticated methods to solve this correlated, yet simpler impurity model,
called “impurity solvers”, have been developed. While some of these impurity solvers (think of
the numerical renormalization group or segment-picture continuous-time quantum Monte Carlo
solvers) yield essentially exact solutions for the N, = 1 case at equilibrium, they face a number
of difficulties beyond this regime. For instance, as the number N, of impurities (or orbitals
when going beyond the single-orbital Hubbard model) increases, the exponential wall plaguing
classical methods to tackle the Hubbard model makes its comeback. Besides, many of these
solvers (like quantum Monte-Carlo methods) work on the imaginary time axis, and thus require
uncontrolled analytical continuation techniques to obtain data on the real axis. Conversely, most
real-axis techniques (like exact diagonalization) must deal with the large number of bath sites
used to represent the noninteracting environment, and the associated exponential complexity.
As for tensor network techniques, the time evolution required to obtain Green functions may
lead to large entanglement levels and thus make these methods either unreliable or unpractical.
All these issues are made worse when turning to out-of-equilibrium regimes, which are beyond
the scope of this lecture.
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Given these limitations of impurity solvers, quantum computers, now that the problem has
been “distilled” down from a large lattice problem to its “quantum quintessence”, an impurity
model, appear as interesting candidates to reach regimes that are out of the reach of classical
impurity solvers: for instance, the regime of large cluster size N, or the long-time limit needed
to resolve low-energy components of the spectral function. Even though the inherent difficulties
of quantum computers are still there, they are made less severe by the reduction to an impurity
model.

The goal of this lecture is to explain how the impurity problem of DMFT could be tackled by
quantum computers in theory (that is, with perfect or error-corrected quantum computers), but
also in practice (taking into account the limitations of current and near-term quantum hardware).
To this aim, we will first very briefly recall the DMFT formalism (illustrated in Fig. 1), and then
introduce the basic tools of quantum computing. Then, we will describe the textbook quantum
algorithms that can be used to solve impurity models, before turning to the practical issues and
how other types of algorithms can be used to try and overcome those issues.

2 Dynamical mean-field theory and impurity solvers

In this section, we briefly introduce the main DMFT concepts, and in particular the main com-
putational bottleneck of DMFT, the impurity model. We also explain the main challenges of
classical methods.

2.1 Self-consistency equations

The main target of equilibrium DMFT is the lattice retarded Green function, G®(k,w) (Eq. (2)).
A perturbation expansion of the Hubbard Hamiltonian (Eq. (1)) in powers of the interaction U
generates a series expansion around the unperturbed Green function G (k,w). This series can
in turn be cleverly resummed to yield the following equation, called the Dyson equation

GR(k,w) = G?(k,w) + GOR(k,w)Z(k,w)GR(k,w), 3)

with a new object, X'(k, w), called the self-energy, that vanishes when U vanishes. This self-
energy captures the effect of interactions on the propagation of electrons. In the limit when the
Hubbard model is defined on a lattice with infinite dimensions, the self-energy becomes local,
namely independent of k. DMFT consists in (i) making the approximation that the self-energy
remains local also in finite (and even low) dimensions, and (ii) using a surrogate model, which
we will later call impurity model, from which a local self-energy Xi,,,(w) can be computed
as an approximation to the lattice self-energy. This surrogate model also originates from the
infinite-dimensional limit of the Hubbard model. It is defined by its action
B

Sy — / /0 ’BdeT’;c:;(T)( G (r—1)e, () + / arUni(oiny (7). @)

0

Here, ¢} (7) and c,,(7) denote two Grassmann fields. Sin, depends entirely on U and on the
noninteracting Green function G, (here given in imaginary time 7 for simplicity; in general,
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fR(w) can be recovered, at least formally, from f(7) by first Fourier transforming f(7) to

fliwy,) = foﬂ dT ei™n f(7) and then performing an analytical continuation fR(w) = f(z =
w+in)). G, X ]mp and the impurity Green function Gf}np are related by the Dyson equation:
SR(W) = Gyl (w)— (G}?np)_l(w). One often defines the hybridization function A®(w) as
AR (w) = w + p — Gy ' (w). With this, the impurity action reads

Simp = Sloc + Shyb‘ (5)
Here, Sioc :foﬁdT ci(7) (0r—p) co (T +f0 d7 U n4(7)n,(7) is easily seen to be the action of

a single correlated site, namely a single fermionic site with potential energy —x and interaction
energy U to penalize double occupancies. The hybridization term in the impurity action, Shy, =
I g drdr" > _ci(1)A(T—7")c,(7'), describes how this site is coupled to an environment that
is completely characterized by the (dynamical) mean-field A®(w). This dynamical mean-field
a priori describes an infinite number of degrees of freedom. Since the spectral function is the
central object of interest, one adjusts the surrogate model (and hence A®(w)) in such a way that

its Green function G}, (w) coincides with the local component of G™*(k, w)

Ghip(w) [AY] =) GR(k,w) [AF]. (6)

In this self-consistency equation, we made explicit the functional dependence on AR: (i) as
is directly a functional of A® (see Eq. (9) below); (ii) the
dependence of G®(k,w) comes from the Dyson equation (3), which, when performing the

. R
the Green function of Siyp, Gimp

DMFT approximation X(k,w) ~ Xin,(w), explicitly reads

1
w— (k) + i — SR (@)[AR]
with (k) the space Fourier transform of the hopping matrix ¢;; of the Hubbard model (Eq. (1)).
Finally, U1 (w)[AR] = w+p— AR — GR (w)™' [AR]. Putting everything together, we obtain

imp imp

GR(k,w) = (7)

a fixed-point equation

1
Ooale) (4] = 2 (a7 G T (29 =<0k ®

imp

Solving DMFT amounts to adjusting AR (w) to fulfill the above equation. It is usually solved
(w) for a given AR(w). We
will henceforth refer to this task as “solving the impurity model”: it is the bottleneck of DMFT.

iteratively. The process crucially hinges on the ability to find a Glmp
We note that the derivation above can easily be adapted to the case of several correlated atoms
(or “impurities”) instead of one (this is then called “cluster DMFT”), and to the nonequilibrium
case (“out-of-equilibrium DMFT”).

Before turning to solving impurity models, let us emphasize that imposing constraints at the
level of the (single-particle) Green function is a choice driven by the physical question at stake
(here the study of phase transitions with order parameters related to (). Other choices are pos-
sible, leading to a whole spectrum of so-called quantum embedding theories (of which DMFT
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is the earliest representative): one may require self-consistency on “simpler” objects (like one-
particle reduced density matrices <c}cj> (same as DMFT but with no time dependence), leading
to theories like density-matrix embedding theory (DMET, [4]) or rotationally-invariant slave
bosons (RISB, [35, 6])), or on more sophisticated objects (like two-particle Green functions,
leading to theories like the dynamical vertex approximation, DI'A [7]). In the former case, one
can have the intuition that the corresponding surrogate model will be simpler; conversely, in the
latter case, the impurity model should be more complicated [8]).

2.2 Classical impurity solvers...and their limitations

In this section, we briefly address the problem of finding the Green function Gjy, for a given
hybridization function A. In a Grassmann path integral formalism, it is given, as a function of
imaginary time 7, by the expression

Gimplr) = — / D e, "], ()¢ (0) ¢Sl ©)

(We dropped the o dependence in Giy, to simplify notation, but phases with spin-symmetry
breaking can be studied). Impurity solvers can be classified in two main families, Hamiltonian-
based solvers and action-based solvers.

2.2.1 Hamiltonian-based solvers

We start with Hamiltonian-based solvers, whose formalism is more directly translatable to quan-
tum algorithms. In Hamiltonian-based solvers, one introduces a Hamiltonian model, dubbed the
“Anderson impurity model” (AIM)

Hamg = Unyng — MZ cle, + Z €k algakg + Z Vi (aLUcU + h.c.> , (10)
o ko ko

which describes a single atom (called the impurity) with potential energy —x and interaction en-
ergy U coupled via hopping terms V, to a bath of noninteracting fermions with energies ¢, (and
creation (resp. annihilation) operators aLg (resp. a,,)). This model was originally introduced
by Anderson to describe isolated impurities in metals [9], hence its name. It is also central
to explain so-called Kondo physics (a Schrieffer-Wolff transformation of this model yields its
low-energy simplification, the Kondo model). We are now going to show that the hopping V
and energy ¢; parameters can be adjusted so that the Green function of this model coincides
with the impurity Green function (Eq. (9)).

The Green function of the impurity site in Hxpy 1S given by

Gam(T) = —/D e, ¢ ag, ar] co(T)cs(0) e AM (11)

where Sapy is the action corresponding to Hapv. Since Sapv is quadratic in the bath fields a(7)
and ax(7)*, they can be integrated out

[3 *
/D [ak’ az] efsAIM _ efsk,cfffo drdr’ 3 i (1) Aam(T—7")eo (77)
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with ARy (w) = X0, V2/(w+in—ey). By comparing Eqs (11) and (9), we see that G can
be made to coincide with Gy, provided ARy (w) = A®(w). In other words, if one can find
parameters (V}, €x) such that

V2
R _ k
At (w) = g prpr— (12)
k

then the AIM’s Green function coincides with that of the impurity. This exact correspondence
(up to a fit) between our action-based impurity model and a Hamiltonian model makes it possi-
ble to tackle the impurity model with a variety of Hamiltonian-based techniques. Before we turn
to the main methods and their limitations, let us emphasize that the fitting problem (Eq. (12)) it-
self is not straightforward: in practice, one needs to perform this fit with a finite number of bath
orbitals, possibly leading to fitting errors and finite-size effects. Different choices of metrics to
optimize the fitting parameters (V}, ;) will a priori lead to different results.

Hamiltonian-based techniques consist in finding the eigenvectors |¥,) and eigenvalues F,, of
Hapy to compute the Green function. Indeed, one can rewrite, in the operator formalism,

Gam(T) = = Tr [p ey (7)c(0)], with p = e #Hamt /7 (and 7 > 0 here). Inserting completenesg

relations and expanding the trace, we get Gap(7) = —% >, € PPoe " Ea =B (W, ||,/
that becomes, once Fourier-transformed to Matsubara frequencies iw,,, the so-called Lehmann

representation
1 e PPar 4 e=BEa 9
G W) = —— U, lc|lWa)|” . 13
an (i) 7 Z iwn—(E — Ey) [(Wale|War) ] (13)

!

a,o

In the zero-temperature limit (5 — o0)

, 1 1
Gam(iwn) == @wn—(Eo—Ea)|<%’cl%>|2_Z z’wn—(Ea—Eo)H%’C‘%HQ' (1

a€EH N +1 a€HN, 1

where we supposed that the ground state |¥;) contains N, electrons, and Hy,+; denotes the
eigenspace with N, & 1 electrons. The spectral function Ajn,(w) = —% Im Gam(z = w+in)
thus has Dirac delta peaks at energies w = Ey—FE,, (with @ € H y_11, namely minus the electron
addition energy) and w = E,—FEj (with o € H__1, namely the electron removal energy).

The numerical challenge thus consists in finding the eigenvectors |¥,) and eigenvalues E, of
H amv (at low temperatures, only the low-lying ones). The sheer size of the Hilbert space (47Ve ™V
if we denote by /N, the number of bath sites) makes it a difficult problem, but the methods below
either try to exploit the sparsity of H sy and the fact that only the low-lying states are needed,
or use a compressed state representation that works well when entanglement is low.

Exact diagonalization: Lanczos method. A first method, called the Lanczos method (see
[10]), avoids the O ((4N N, b) 3) cost of a direct diagonalization of Hapy by using the sparsity of
H any: in the Fock basis representation of Hapv (Eq. (10)), the number of nonzero elements per
row or column of Hapy is of the order of s = O(N.+1N,). Thus, matrix-vector multiplications
Ham|¥) take only O (s4™="") time. This property is exploited in the Lanczos method by
finding the matrix of Hapy in the so called Krylov basis {|x»)},_; x of the K-dimensional
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vector space spanned by the family {|®o), Ham|Po), Hin|Po), - - - - Hxim|Po) }, with |By) is an
initial state that must not be orthogonal to the exact ground state |¥y). Hapy is tridiagonal in
this basis, which makes it easy to compute its ground state energy. The error on the ground state
energy obtained in this reduced space decreases exponentially with K [10].

Let us now turn to the Green function. Using Eq. (2) in the case of the AIM and at zero
temperature, we obtain

GR(t) = O(t) <—ieiEOt<%‘cae_iHAIMtcHW@ — ie‘iEOt<%‘czeiHAIMth|WO>>. (15)

Taking the Fourier transform of the first term (the second term, G<(w), can be dealt with in a
similar fashion), and inserting resolutions of the identity, we obtain

G (w)=—i ) / at ™ (Wy et e, e Hamt g S (|l W) (16)
o YO0

= —z’Z/Oodt el Bo=Et| (g |t ) [, (17
o YO0

Performing the integration and adding a > 0 factor to ensure convergence, we find the so-
called resolvent form of the Green function

G” (wtin) =Y [l ) = (lc ! el | W) (18)
— Fo—Eo +w + in O Bo—H+w—+in

Having computed |%,) and Fj in the first Lanczos step, one can now perform a second Lanczos
step, this time with |®y) o< cf [W,). In the corresponding second Krylov basis, taking advantage
of the fact that H is tridiagonal in any Krylov basis, one can easily write a continued fraction
expression for G~ (w+in). One can thus obtain an approximation of the Green function in real
frequency with a run time that scales (with a naive estimate) as O(sK4N=T).

Matrix product states: density matrix renormalization group method A second method
allows avoiding the exponential cost of storing the wave function by assuming the bipartite
entanglement in the system is low. Instead of representing the wavefunction as

|!p> = Z wb1,---bN‘b17"->bN>a (19)

bi,..by

with N = 2 (N.+N,,), with associated storage cost 2N we assume the wavefunction amplitudes
to be representable as

G = S0 ACTL AN A A @O

al 1,02 QN-—2,&N—1
a1,...0N—1

) b ) ) )
with N rank-3 tensors [A(k)]ofk 0T matrices if one considers b, to be fixed, hence the

name “matrix product state” (MPS) representation. This is illustrated in Fig. 2(a). Each tensor
index has dimension 2, x, x for bx, ai_1 and oy, respectively, with x called the bond dimension
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@@ =\ —®

N

Fig. 2: Matrix product states and the density matrix renormalization group method. (a) MPS
representation of |¥). (b) MPO representation of H. (c) Tensor-network representation of the
energy functional of DMRG. (d) TN representation of a partial derivative. (e) TN representation
of the eigenproblem (thick lines denote groupings of tensor legs).

of the MPS. The total storage cost thus scales as O(Nx?): it is now linear in the number
N o< N.+Nj, of sites! However, a fixed bond dimension x places a limitation on how large
the so-called von Neumann entanglement entropy S of the state can be. One can easily show
that y needs to fulfill y > 2% ( [11]); otherwise, truncation errors appear. It turns out that for
Anderson impurity models with N, = 1, one can always make the problem one-dimensional, in
which case known results about the entanglement entropy of ground states of one-dimensional
Hamiltonians apply: S follows an “area law”, which in 1D means that S o const. This allows
for a very inexpensive storage of the ground state of the AIM for the N, = 1 case.

To find the actual MPS form of the ground state, one usually resorts to a variational algo-
rithm known as the density matrix renormalization group algorithm (DMRG), which con-
sists in minimizing (¥(AW, ... AN | H|w (AW, .., AM)) while imposing normalization,
(AW AN W (AW AM)) = 1, (Fig. 2(c)). Writing stationarity conditions for a
given tensor A*) (given a fixed value of the other N—1 tensors) leads to an eigenvalue problem
H(Ef]?w(k) = E®y*) with ¢)*) of size 2x? (Fig. 2 (e)): it can be easily solved exactly. The
process is then iterated over k = 1, ..., N several times (sweeps) until convergence of the indi-
vidual tensors. The computational cost thus scales as N (2X2)3 with N the number of sweeps,
if one uses a direct diagonalization procedure.

With the ground state in hand, one can now in principle compute the Green function: in Eq. (15),
we see that to get the first term, we need to start from |¥), apply a creation operator to get
cl |W), time evolve (e~*#am!) and then project back onto cf|¥,). The operation c[|¥) is
straightforward to perform with matrix product states. The time evolution can be performed
with a number of methods. The most straightforward one is time-evolving block decimation

—iHamt

(TEBD), which consists in splitting the time-evolution operator e in a sequence of so-
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called Trotter time steps

e~ Hamt — <e_iHA'Mt/]\“>Nt ~ (1 - iHAIMi>Nt. (21)
Ny

Then, the operator 60U = 1 —iH AIMN% (represented in so-called matrix product operator, MPO,
format) is applied to the current wavevector (represented in MPS format) /V; times. This is in
principle simple, but the bond dimension x of the MPS is not conserved upon application of dU:
it generically increases, because time evolving the ground state generates excited states that are
usually more entangled than the ground state, and thus requires a larger bond dimension to be
represented exactly. One faces a dilemma: either ones tries to keep up with the increasing en-
tanglement by increasing x (but one quickly reaches memory limits), or one truncates the MPS
to a fixed maximal bond dimension, thereby incurring truncation errors. More sophisticated
methods exists (see [12] for a review), but they generically meet the challenge of an increasing
entanglement entropy with evolution time .

2.2.2 Action-based solvers

The above methods rely on a Hamiltonian representation (Eq. (10)) of the impurity action (5).
A major drawback of these methods is that they require a Hamiltonian model with a large bath
(large Ny) to faithfully represent the hybridization function of DMFT. This large bath, in turn,
leads to large numerical costs (unless one chooses a small bath. . .but then suffers from large
finite-size effects).

Action-based solvers avoid this problem by working directly in the action formalism. Starting
from Eq. (5), they fall into two main categories, depending on whether they use an expansion
in powers of S, (interaction expansion solvers) or Shyp, (hybridization expansion solvers). The
resulting infinite sum is sampled using Monte-Carlo methods. The two categories come with
distinct properties: intuitively, interaction expansion solvers are better behaved when interac-
tions are weak, while hybridization expansion solvers are better behaved in the strong interac-
tion limit. Both families yield the impurity Green function in imaginary time Gin,(7) exactly
up to statistical uncertainty. It turns out that this statistical uncertainty (namely the variance of
the Monte-Carlo averages used to compute the Green function) generically blows up (exponen-
tially) with decreasing temperature and with increasing cluster size (or number of orbitals) N,
a manifestation of the so-called fermionic sign problem. To curb this variance, one in principle
needs very long Markov chains and thus very long run times.

Let us also stress that even in the absence of this sign problem (say in the N.= 1 case), obtain-

R

ing the real-time frequency Green function Gy,

(w) from noisy (due to Monte-Carlo statistical
noise), imaginary-time Gim,(7), a problem called the analytical continuation, is notoriously dif-
ficult (it amounts to inverting an ill-conditioned matrix), so that it would be highly desirable to
work directly in real time. However, in real time, Monte-Carlo methods struggle with another
sign problem stemming from the complex imaginary factors of the time evolution operator (“dy-
namical sign problem”), strongly limiting these methods to short times, and thus not allowing

enough low-frequency accuracy in the resulting spectral functions.
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3  Quantum computing tools for impurity models

In the previous section, we saw that DMFT can be seen as a classical heuristic that self-
consistently reduces strongly correlated lattice models like the Hubbard model to simpler, yet
still strongly-correlated models known as impurity models (Fig. 1). To compute the spectral
function of the lattice model within the DMFT approximation, one needs to compute the impu-
rity retarded Green function, namely the Green function of a few (/V..) correlated sites exchang-
ing electrons with a large noninteracting fermionic bath. Essentially, as we saw, the computation
of this Green function boils down to computing objects of the form

G~ (t) = —i{c,(t)cl) (22)

which, together with its counterpart G<(t) = i(clc,(t)), appear in the definition (2) of the
retarded Green function (here for simplicity we dropped the o dependence of (7, and assumed
N. = 1; also, because of the ©(t) appearing in (2), we can assume ¢ > 0).

The goal of this section is to show how quantum computers can be used to compute objects
of form of G~ (t) for the specific case of impurity models. If we expand its zero-temperature
expression, we recall that we obtain

G~ (t) = —i{Wp|eamt ¢ e Hamt of ), (23)

This form makes it clear that we can decompose the computation in two parts: the computation

of the ground state |¥;), and the time evolution ¢~ #ant

of the ground state with one added
particle. This is similar to the strategy we described above for matrix product states, but as we

shall see, using a quantum processor comes, at least in theory, with added benefits.

3.1 Quantum computing in a nutshell

In this section, we introduce the main tools available to a quantum programmer, with a focus
on tools that will be useful for solving impurity models. In particular, a goal of this section is
to describe a simple way to perform the operation e~*/AM! on a quantum computer.

3.1.1 Definition of a quantum computer
A quantum computer is a system described by a time-dependent Schrodinger equation

d|w(t
z’h% = H(t)|¥(t)), (24)
and whose initial state |¥(t=0)) and time-dependent Hamiltonian H (¢) can be controlled to
reach a target final state |¥(t;)), on which observables (hermitian operators) O of interest can be
measured. This can be done either in a one-shot way (giving access to a bit of information A with
a probability given by the overlap of |¥(t¢)) with one of the eigenvectors |, ) of 0), or in an av-

erage way (giving access to a statistical estimate of the average value (O) = (W (tr) }O|W(tf)>).
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What this system is varies from one quantum computer implementation to the other. A distinc-
tion is usually made between analog computers (also known as quantum simulators)—whose
Hamiltonian is very specific (e.g with a limited control on the individual degrees of freedom),
and digital (or gate-based) computers—which are characterized by the possibility to control
individually each degree of freedom, with a practical consequence: this individual (or local)
control, complemented with an entangling operation between the degrees of freedom, leads to
a form of “universality”, namely any unitary operation U can be approximated by the unitary
operator corresponding to the full time evolution

U(t) = Texp <—i /0 tH(T) dT). 25)

A universal quantum computer can thus be regarded as a machine that implements arbitrary
unitary operations. The space on which these operations are performed is, for mainstream
quantum computers, the Hilbert space of N two-level systems (aka quantum bits or qubits) H .
Its size is exponential (dimHy = 2%), and a generic N-qubit state (recall Eq. (19)) a priori
requires 2/ complex coefficients to be represented on a classical computer. While simulating
such a time evolution on a classical computer would a priori involve resources scaling as O(2%),
letting the quantum computer evolve “naturally” leads to resources linear in the number of
degrees of freedom N.

Let us note that quantum computers are not limited to qubit (or spin-1/2) systems. In particular,
a natural candidate implementation for dealing with fermionic systems would be a system with
fermionic degrees of freedom like ultracold fermionic atoms in optical lattices, whose Hamil-
tonian is engineered as close as possible to, say, the Hubbard model. These systems are indeed
promising platforms for gaining insights, among others, into Hubbard physics, with very re-
cent major improvements in the reachable temperatures. In this lecture, however, we will focus
only on qubit-based computers, and within this category, on gate-based quantum computers. As
we shall see, using these computers to tackle fermionic systems will require a translation from
the world of fermions to the world of qubits; but the exquisite control afforded by this type of
computers makes them very convenient to design algorithms.

3.1.2 The circuit model

One usually picks, as a basis of the Hilbert space #,,, the tensor basis of the eigenstates of
Pauli z matrix o,: it is denoted as |by,...,by), with by € {0,1} and ot |b) = (=)%|b).
It is usually called the computational basis. In the following, aék) will denote a Pauli matrix
(o = x, vy, 2) acting on the k-th qubit.

A quantum computation consists in modifying the state |¥) by cleverly designing the time
dependence of the Hamiltonian. In gate-based quantum computers, the time evolution U =
U(t) (Eq. (25), we drop the ¢ dependence for clarity) is split into a sequence

Ng
U= H U, (26)
k=1
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(a) Analog computing (b) Digital (gate-based) computing
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Fig. 3: Circuit model: a quantum circuit (on the right) describes a sequence of gates, which
are individually implemented in an analog fashion with time-dependent terms in the hardware
Hamiltonian. Reproduced from [13].

of N, elementary unitary operations Uy, referred to as quantum “gates”, that correspond to
switching-on some terms in the Hamiltonian. For instance, in Fig. 3, the G gate, corresponding
to a unitary Ug, may correspond to a Hamiltonian H(t) = (Z(t)ag(gl) /2—4(t) oM. with Ug
given by the Dyson series Ugs = T e~iloHa(T)dr  Since Hg acts only on the first qubit, so
does Ug. Such a single-qubit gate (depicted by a box acting only on one line, namely one qubit)
does not create entanglement (acting with Ug on a factorized state yields a factorized state). A
standard single-qubit gate is the Hadamard gate, whose expression in the {|0), |1)} basis reads

1 1 1
UH:E<1 _1>. 27)

In other words, Un|0) = (|0)+|1))/v/2: the Hadamard gate creates superpositions. Other
important standard single-qubit gates are single-qubit rotations, defined as

Ro(0) = e12%, (28)

They rotate the qubit around the axis « by an angle 6.

Gates depicted as boxes spanning several lines, on the other hand, are many-qubit gates. They
require Hamiltonians that couple several qubits (like, say, H(t) = g(t)ag(gl)@) ot?, which gen-
erates a gate Uxx(t) = exp (—i f(f dr g(T)ag)@) 09(02))). The specific two-qubit gate shown in
Fig. 3 after gate (G is a so-called CNOT gate. Its expression in the {|00), |01), |10), |11)} basis

reads

o O =
S = O

0
0
0

_ O O

Ucnor = (29)

0 01

)

For instance, Ucnor|10) = |11): if the first (“control””) qubit is in state |1), the second (“target”)
qubit is flipped. This notion of controlled gate can be generalized: a controlled-U gate U, is
such that Uc|0)[¢) = |0)|)) and Ue[1)[¢) = [1)U]eh).

Let us stress that several Hamiltonians H () can yield the same unitary evolution (for instance
several functions g(¢) generate the same Uxx gate in the example above, provided the integral
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fo 7)dr is the same). Thus, going to a circuit-level description of the time evolution instead
of staymg at the Hamiltonian level allows one to abstract away the implementation details.
Depending on the architecture, we may have different H (¢) yielding the same unitary evolution.
To benefit from this description, we of course need to be able to switch on and off terms of
the Hamiltonian acting on selected qubits, a property we called “local control” above, and that
analog computers do not possess. Finally, we call “‘quantum circuit” the graphical representation
of the sequence of gates: it describes the unitary operation that is effected by the quantum
computer.

3.1.3 Time evolution

In view of our goal of computing the Green function (Eq. (23)), there is a special unitary oper-
ation we would like to realize, namely a time evolution (like U = e~#7amt jn Eq. (23)).

Many quantum algorithms have been and are being developed to perform this task, also known
as the “Hamiltonian simulation problem”. With an analog quantum computer (or quantum
simulator) that directly implements the Hamiltonian under study (say Hyadware = Ham), this
just consists in letting the system evolve for a time ¢. For gate-based quantum computers, we
need to find a sequence of gates that at least approximately implements e ~*/* (the same method
applies to the more time-dependent case Te~ilo H) 7). The most straightforward algorithm,
known as the Trotterization or product formula method, relies on decomposing H as a weighted
sum of, e.g., products of Pauli matrices

M
H = Z NP, (30)
=1

with \; € Rand P, = ® el aak , where here the index o, runs over 0, z, y, z, where oy = I by
convention. Because the individual Pauli terms P, do not commute with one another, one then
performs a similar time slicing (called Trotterization) as the one we encountered in the TEBD
algorithm in a tensor network context (see Eq. (21))

PN R 2
e—th _ (e—lHt/Nt (He Nt (ﬁ) ) = H HeiZNiiPﬁ +0 ( ) (31)
t m=1i=1 N

With this slicing, one obtains a sequence of /V;-M unitary operators with the form of a Pauli
rotation Rp, (6;) = e~13 7, with 6; = 2\it/ N,

Let us know show that each Rp, (6;) is easy to implement in terms of a simple quantum circuit.
Let us start with a simple case P; = oMol Ttis easy to check that the circuit shown in Fig. 4
implements R_a)_(0). One easily shows, by induction, that R« () is implemented
by a circuit with CNOTS on pairs (kq, ka), (ko, k3)s ooy (kx—1, kK), anr(;tatlon R.(0) on the K-th
qubit, and then the reversed sequence of CNOTs, as illustrated in Fig. 4(c). Finally, to perform
a general Pauli rotation (with Paulis on the x and y axis), one performs single-qubit rotations

on the requisite qubits to go back to the z axis. For instance, for P, = oMol ), noticing that

UHJZUI({T) =0, (32)
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R.(0) R.(0)

Fig. 4: Circuits for Rp,(0). (a) Circuit for R ) _(0). (b) Circuit for R_a)_) (0). (c) Circuit
for Rgg)ggz)ggs)ay;) (9)

we see that

U R o (0)U = U (cos(0) — isin(0)oPo®) U

= cos(6)] — isin(f)oMo?
= Rgg)agz) (6)

This is illustrated in Fig. 4(b).

We thus have a generic, approximate way to perform the time evolution of a Hamiltonian that
we have decomposed as a sum of Pauli operators (Eq. (30)). Let us now count the number of op-
erations contained in this circuit: there are NV, Trotter steps, each of which contains M operators
of the form Rp,(6). The number of gates in each operator depends on the support s; (number
of non-identity Pauli operators) in P;: we have O(s;) gates in the corresponding subcircuit. If
we call s = max; s;, we obtain N, = O(N;Ms), with a total error € = O(¢*/N,). One usually
wants to adjust N; to reach a desired error e: N; = O(t%/¢) and thus,

N, = O(M#t*s/e). (33)

This calls forth several remarks: (i) the number of terms M needs to be “small”. A generic
Hamiltonian in A, will have M = 2V, which is intractable. However, as we shall see, the
Hamiltonians we are interested in have a number of terms M that scales polynomially with
N (which is considered to be tractable); (ii) the longer the evolution time ¢, the more gates.
Here, the quadratic dependence (instead of the expected linear dependence) comes from the
fact we had to slice the time evolution. We can use higher-order Suzuki-Trotter formulas that
will lead to a scaling that is closer to linear, but with an overhead in the number of gates per
slice (see [14] for a general upper bound on the Trotter error). More advanced methods such as
qubitization [15] achieve a linear scaling, but they usually require additional (“ancilla”) qubits.
They can also achieve a better scaling than 1/¢; (iii) finally, the support s of the terms in the
decomposition of H plays an important role. As we shall see below, the fermionic nature of the
Hamiltonian of interest here leads to quite large supports.
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3.1.4 Quantum measurements and the variance issue

Before we turn to the specifics of fermionic problems on qubit quantum computers, let us exam-
ine one last issue with the quantity we need to compute, Eq. (23). It is expressed as a quantum
mechanical average value (1|O|¢), with operator O = Ufe,Ucl and U = e~ am!, We have
seen in the previous section how to perform U as a quantum circuit, but what quantum mechan-
ics gives us easy access to is the estimation of (1| A|¢), where A is a Hermitian operator, not
any operator like 0.

Before we turn to specific quantum circuits that allow us to get access to (1)|O]t), let us focus
on the Hermitian case. In quantum mechanics, the measurement of an observable A with eigen-
values A\ and eigenvectors |p,) results (in the nondegenerate case) in a collapse of [¢)) to one
of the eigenvectors |p,) with a probability given by Born’s rule, p(\) = |{yx|t)|*, and gives
access to the value A of the corresponding eigenvalue. Repeating the circuit and measurement
several (say V) times (usually called “shots”) allows to compute a statistical estimator A(Ns)
that converges to the expectation value of A in state |1} in the large N limit

A(N,) = NLZA ~— D PN A= (Y[ A[p) = (4). (34)

Quantum computers can either be used in a one-shot way or to compute averages. The one-shot
way is particularly useful when the distribution p()\) is peaked around a value A\q which one
wants to discover: in that case, a single (or a few) shots will yield \y. As for the computation
of averages, it also works when p(\) is not peaked, but one has to contend with the statistical
error (standard error on the mean)

AAWN) = {(()=AN))*) = Vaféf)’ (35)

where the second equality holds because independent experiments (shots) are independent and

identically distributed (iid). The variance is, explicitly,

Var(A) = (| A2y) — (6] Ale))’,

so the number of shots needed to attain a fixed accuracy AA depends both on the observable
A to be measured and the state [¢)) on which it is measured. For instance, if one is trying to
generate the ground state |%) of some Hamiltonian H, and wants to measure its energy (H),
then, because |¥) is an eigenstate of H, the variance will vanish and only one shot will suffice.
This property, called variance reduction, is often exploited in (classical) variational Monte-Carlo
algorithms: as the algorithm converges to the ground state, a fixed number of samples (shots)
gives an increased accuracy.

However, not every observable A can be measured on quantum computers. In fact, in most
technologies, only Pauli z matrices o,(zk), for k = 1,..., N, and tensor products thereof, can be
measured. This is represented by a meter symbol in quantum circuits (see the symbols at the
end of the first lines of Fig. 5(a) and (b)). Other Pauli expectation values can be computed by
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Fig. 5: Hadamard test: (a) Computation of (y|U ) by the Hadamard test circuit. The
S gate is used only to compute the imaginary part. (b) Application to the computation of
(W |UTPU P;|W,) terms.

rotating the state to the right axis: for instance, to measure (o,) = (¢|0,|1), one can apply a
Hadamard gate to get [¢)') = Uglt) and then, using (32), measure (0,.)" = (¢'|o,[¢).

As for generic, multi-qubit observables A, they can, as we saw earlier for the Hamiltonian,
always be decomposed as a weighted sum of products of Pauli matrices

M
A= Z \ P (36)
=1

One can thus in principle compute (A) by computing separately the M terms (P;). For example,
to measure <ag(51)a§2)>, one first applies a Hadamard gate on the first qubit, and then measures

the operator oMol repeatedly.

We now turn to the problem at hand, namely computing ()|O¢) for a generic operator. A
generic strategy is to decompose O as a sum of unitaries, O = DN Ul (with \; € C), and
compute (1|U;]1)) separately. (Note that a Pauli decomposition like Eq. (36) is also a decom-
position as a linear combination of unitaries since Pauli matrices are unitary).

The circuit shown in Fig. 5(a), dubbed a Hadamard test, does the job of computing (/|U 1))
for a given unitary U: starting from a state |0)® [¢), applying the first Hadamard gate yields
(|0y+|1))/v2® [). Then, the controlled unitary yields (|0)[)+|1)U|¢))/v/2, and the final
Hadamard yields the final state [¢;) = (|0) (I+U) [¢) + |1) (I-U) [¢)) /2. The meter symbol

stands for a o.") measurement. The probability of getting outcome 0 is given by Born’s rule

p(0) = (¢] (J0)(0] @ 1) [vos) = ||(T+U)|0)||"/4 = (1+ Re(y|U4)) /2, so that
Re(y|Uly) = 2p(0) — 1. (37)

If one adds an .S gate to the circuit (dashed box in Fig. 5(a), whose matrix is Ug = < (1) ? )),
U changes to iU in the above computation, giving Im(¢|U|¢) = 1—2p(0). Thus, provided the
ability to implement a controlled-U evolution, we can compute terms of the form (¢/|U|¢), and
thus arbitrary values ()|O|¢) via the linear combination of unitaries.

The last step we have to go through is how to express O =Utc,U c! as a linear combination of
unitaries. For this, we need to go from fermionic operators to qubit ones.
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3.1.5 Quantum computing for fermions

In the previous sections, we have learned to perform time evolutions of Hamiltonian operators
decomposed as a weighted sum of Pauli operators (Eq. (30)), and to measure quantities of the
form (1|O]4)) given a decomposition of O as a weighted sum of unitaries. We now explain how
to obtain the precise form of these decompositions in the case where H is a fermionic operator
like the AIM, and O = U'e,Ucl.

The task consists in finding a mapping between a Fock space with N fermionic orbitals, with a
Fock basis {]nl, o) =11, (cL)nk 0,...,0),nt € {0, 1}}, and a Hilbert space with N
qubits, with a basis {|b1) ® |be) ® - -+ @ |bn), by € {0,1}}.

The Jordan-Wigner mapping The simplest mapping (also called encoding) between these
two bases consists in defining, forall k = 1,..., N,

It is called the Jordan-Wigner encoding. Having chosen this correspondence between states, we

want to find the qubit operator ¢' that acts on the |by,. .., by) the same way as ¢! acts on the
|ni,...,ny), namely:
k—1
chlng,...,0,. .. ony) = (=) ZF=1" |ny, 1L ny) (39)
CL|n1,...,1,...,nN> =0

The operator that turns a two-level system |0) into |1) and vanishes on |1) is o4 = ( (1) 8 ) =

k—1
(ax—iay) /2. To take into account the (—)zk’=1 " factor, one needs to introduce o, operators
on qubits k&’ < k, so that

& =0l gl Dh (40)

4 z

For a spinful fermionic model, we further need to pick an ordering of the (7, o) index. Two nat-
These choices will yield equivalent, but different quantum circuits. Choosing the second order-

I ¢. term appearing in the kinetic term of the

ing (the one that does not mix different spins), a ¢;,¢;,

Hubbard model will transform into

elytje = 0ol o) g U (41)
while Hubbard interaction terms like n;yn;, will transform into i 7i;y = (I—o' ") (I—a'™") /4.
In other words, the Anderson Hamiltonian, with terms acting on at most 2 fermionic orbitals at
the same time, is turned into a spin Hamiltonian with terms acting on up to 2N, orbitals due to
the strings of o, operators, called Jordan-Wigner strings, appearing in (41). Explicitly: mapping
the impurity orbital (c!) to spin index 1 and the k-th bath orbital (a,Tm) to spin index 14k we
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obtain
~ U % Ek €k 12 U U
How— [L_F Sk ) N EE (ko) o (B Y (Lo) L Y D) 5 (14
AIM <4 2+kz2> kZQUZ + 5 1 ;02 +4 o,
Vi : :
X Z Zk ((09(610)_@0510))022,0) gl (U£1+k,a)+zo,§1+k o ) (42)

We now have a Pauli decomposition of Hamv with a total of 2(Ny+1) 1-qubit terms (disregard-
ing the identity term), one two-qubit term stemming from the Hubbard interaction, and 8NV,
terms stemming from the hybridization term, with supports ranging from 2 to /N,+1.

Using this decomposition, we can apply the Trotterization method introduced above to construct
a quantum circuit that approximates e~*amt, One Trotter step will consist in applying R, (6)
rotation gates to all qubits (with angles given by the prefactors in the terms of the first line of
expression (42)). As for the second line of (42), it gives rise to four subcircuits of the type
Rp,(0) that we described in subsection 3.1.3, with circuits of length up to O(N,), and thus a
general scaling of N, = O(Mt*s/e) = O (N{2t?/e) for the time evolution circuit.

Expression (40) also allows us to express OJ = Ufe,U cL as a linear combination of unitaries:
replacing the creation and annihilation operators by (40), we obtain

x

— (03(61’T —Ha(l’T )U(a(l’T)—iJZ(/l’T))
=Ulo{"MUsD —iUTo DU 4+ iU oMUY + UTeM DU (43)

which is in the requisite form.

We thus have achieved our goal. We note that in the single-impurity case that we have picked
as an example, we could have “linearized” the bath, namely transformed the current problem,
where the impurity is hybridized to every bath site (a so-called “star geometry”), to a problem
where the 1 impurity site is hybridized only to one bath site (itself hybridized to a single other
bath site and so on and so forth), and likewise for the | impurity site. This would have allowed
for a “chain geometry” where the Jordan-Wigner strings disappear, yielding a scaling of N, =
O (Npt?/€) gates for the time evolution circuit. However, in the N, > 1 case, we can no longer
perform this trick.

Other encodings The Jordan-Wigner encoding is not the only possible fermion-to-spin map-
ping. While the Jordan-Wigner encoding stores all the information about the orbital occupation
in the states (see Eq. (38)) and the information about the parity in the operators (see the string
of o, operators in (40)), a mirror encoding called the parity encoding does the reverse. For
instance, in the parity encoding, b, = Zl,z,zl n; mod 2, namely the states store the parity in-
formation, and likewise a string of Pauli operators in the expression for the operators will store
the occupation. . . yielding, as for the Jordan-Wigner transformation, terms with a support O(N)
(with NV the number of fermionic orbitals) in the Pauli decomposition of the corresponding qubit
Hamiltonian. A more sophisticated encoding called the Bravyi-Kitaev encoding [16, 17] mixes
the occupation and parity information in a tree structure that allows one to obtain terms with
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Fig. 6: Adiabatic quantum annealing method. (a) Quantum tunneling (green) vs. thermal hop-
ping (orange). (b) Time evolution of the instantaneous energy levels and definition of the mini-
mum gap.

O(log(N)) support. Let us also note that while the aforementioned encodings use a Hilbert
space of the same size as the fermionic Fock space, other encodings use larger Hilbert spaces
(and thus more qubits than fermionic modes) to obtain local qubit Hamiltonians (at the expense
of ancillary qubits) [18-20].

3.2 Quantum algorithms for Green functions

In the previous section, we introduced the main quantum computing building blocks to deal with
fermionic models. In this section, we use these building blocks to introduce several methods to
compute Green functions with gate-based quantum computers.

3.2.1 Ground state preparation: the example of the adiabatic method

The greater Green function G~ (¢) (see Eq. (23) for a definition) requires the preparation of the
ground state |W;) (at zero temperature) or the Gibbs state p = e~% /Z at finite temperature. In
this section we tackle only the zero-temperature case, although quantum algorithms have also
been developed for Gibbs state preparation, usually with the help of additional qubits.

A standard method to perform this state preparation is the adiabatic method. It consists of
initializing the qubit register in an easy-to-prepare state |®,) that should also be the ground
state of a Hamiltonian H,. This Hamiltonian, sometimes called the mixer Hamiltonian, must be
simple enough that its ground state |®y) is easy to prepare, and it must be such that it couples
the different (usually unknown) eigenstates of the Hamiltonian H whose ground state |¥,) we
want to prepare. One then slowly deforms H into H over a period of time ¢,nnealing, fOr instance

H(t) = (1_t/tannealing)H0 + Zf/tannealingfl . (44)

In this time evolution, the role of [, can be seen as allowing for tunneling events between local
minimal of the energy landscape of I, as pictorially represented in Fig. 6 (a). Over time, H
is slowly turned off, hence the name “quantum annealing” given to this method, in analogy to
the classical (thermal) annealing method, which consists in slowly lowering the temperature.
The adiabatic theorem (see [21]) guarantees that for long enough annealing times the system
remains in the instantaneous ground state of H (¢). More precisely,

tannealing > V/ A?nin? (45)
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with V' a matrix element, and A,;, the minimum gap over time between the instantaneous
ground state of H (t) and the first excited state, as represented in Fig. 6 (b).

Thus, to prepare the ground state |¥,) using the quantum annealing method, we need to con-
struct a circuit that implements the time evolution H (¢) for a long enough ¢ynealing. The con-
struction of the quantum circuit to perform this time evolution uses the methods described in
subsection 3.1.3, for instance Trotterization. We note that a longer #,neating Will generically lead
to a deeper state preparation circuit: the best Hamiltonian evolution methods (like qubitization)
achieve a linear scaling of the number of gates as a function of the evolution time. This scaling
is optimal owing to the so-called no-fast-forwarding theorem, which stipulates that time evolu-
tions of sparse Hamiltonians of duration ¢ will require a number of gates at best linear in ¢ [22].
As a consequence, an important practical question is the size A,;,, which itself depends on Hy,
H and the shape of the interpolation between both. It is in general hard to compute, but we at
least know that A, > A, with A the gap of H. Therefore, trying to prepare the ground state
of a small-gap Hamiltonian (and for that matter a gapless one, like a metal) will take very long
circuits.

There exists heuristic alternatives around adiabatic quantum annealing that set out to find short-
cuts to adiabaticity (see [23] for a review). Variational methods like the ones we will introduce
below (see subsection 3.4) can be regarded as examples of such heuristics.

The complexity of ground state preparation On a more formal level, let us note that the
generation of the ground state of a many-body Hamiltonian is generally expected to be hard
(that is, exponential) even on quantum computers: it has been proven to be “QMA-complete”
for k£ > 2-local Hamiltonians [24] (and hence for the Hubbard model [25]). Here, k£ denotes the
maximal support of the terms appearing in, e.g., the Pauli decomposition of H, and QMA—
for quantum Merlin-Arthur—is a quantum analog of the NP class. Impurity problems may be
less difficult in terms of ground state preparation: they are in the QCMA (for quantum-classical
Merlin-Arthur) class [26], a class that stands between NP and QMA in terms of hardness. If they
are gapped, they become easy (efficiently solvable) both for classical and quantum computers
[26]. If not, recent work claims evidence that their ground state can be efficiently prepared by a
quantum computer, while remaining hard for classical computers [27]. This would provide an
a posteriori justification of quantum embedding methods like DMFT: using locality properties
of the interaction, they would help reduce an exponentially problem (the Hubbard model) to an
efficiently solvable problem (the impurity problem).

3.2.2 Time domain: Hadamard test

Once the ground state is prepared, the Hadamard test method to compute the greater Green
function G~ (t) (Eq. (23)) is a straightforward application (first introduced by [28], and well
summarized in [29]) of the few methods we just introduced.

Using the decomposition (43) of UTc,Uc!, we see that computing G~ (t) amounts to summing
four contributions of the form (W,|UTBU P;|), with P,; € {oi'” oy}, Since UTRUP,
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is itself unitary, we only have to use the Hadamard test depicted in Fig. 5, with a controlled-
UtRU P; operation. A naive implementation of this operation would be a sequence of a con-
trolled P;, controlled U, controlled F; and then controlled U t. Yet, the precise structure of the
UTR,U allows for one simplification: the controls on the time evolution U and its inverse U’
can be removed. Let us show that we get the same outcome with and without controls: with
controls, if the ancilla qubit is in state |0) and the state register in state |¢), we end up with
|0)]¢). If the ancilla is in state |1), we end up with |1)UTP;U|+). Without controls, if the an-
cilla qubit is in state |0) and the state register in state |1/), we end up with [0)UTU 1)) = |0)]1).
If the ancilla is in state |1), we end up with [1)UTB,U|v). QED.

The corresponding circuit can be further simplified by noticing that the UT operation has no
influence on the final measurement as it commutes with the remaining operations (that act only
on the ancilla qubit). It can thus be removed, which yields the circuit shown in Fig. 5(b): this
circuit makes it clear that computing the Green function amounts to first generating the ground
state W), coupling it to an ancilla qubit (controlled- P; operation), time evolving the system
(operation U), and then coupling again to the ancilla (controlled- P; operation) and measuring
the ancilla.

Let us end this subsection by estimating the scaling of the run time of the Hadamard test method
with respect to the precision € achieved on the Green function. Since it requires an estimate
of p(0) (Eq. (37)), it is characterized by a 1/e? scaling: the statistical error on p(0) scales as
€ ~ 1//Nyamples> With Nyamples the number of repetitions of the circuit to estimate the probability
of getting a 0 outcome. Therefore, the run time scales as Nemples ~ 1/ €2. This is typical
of classical Monte-Carlo methods, and is a direct consequence of the central limit theorem.
As we shall see in the next subsection, this scaling can be improved by resorting to quantum
interferences.

3.2.3 Frequency domain: quantum phase estimation

High-level description Another quantum algorithm allows one to compute the Green func-
tion directly in the frequency domain, and with a better accuracy scaling. Starting from Eq. (17),
and using fooodt et = 7r5(w)+i73% (P denotes the Cauchy principal value), we obtain

)= (—ms (w— (Ba—Ep)) + P (m» | (@ ) | (46)

The imaginary part of G~ (w) is therefore a distribution of peaks of weight |(¥,|c]|%) ‘2 at
locations E,— Ej.

One of the most important quantum algorithms, quantum phase estimation (QPE, [30]), can be
iHt

applied to this problem, as first pointed out by [29]. Given a unitary operator U = e'* and one

of its eigenvectors |, ) with eigenvalue e*Fe?, it returns, in a single repetition of the QPE circuit,
an m-bit estimate Ea of E, (¢ is adjusted so that £t is normalized: resolving smaller energies
requires longer times). When starting from any state |7) as an input, it returns a m-bit estimate

E,, of one of the eigenvalues E,, and projects the input state to |¥,,) with probability |(Z,|¥)|*.
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(a ) Two-slit and mutli-slitinterferences (b) Phase estimation with one and multiple phase qubits (C)
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Fig. 7: Phase estimation. Analogy between interferometry in optics (a) and quantum phase
estimation circuits (b), with m = 1 ancilla qubit (two slits, top) or m = 3 ancilla qubits (8
slits, bottom). Adapted from [31]. (c) Histogram of the bitstring probabilities p(j) = |a;| for
¢ = E,t = 0.62 and a variable number m of ancilla qubits.

Therefore, several calls to QPE on an input state |¥) will return a histogram with peaks of
height | (¥, |¥)|* at location E,. We thus see that applying QPE to the input state ¢} [¥) and
with H = Ham—Ep will directly yield an estimate of Im G~ (w) (and hence, via Kramers-
Kronig relations, of its real part).

In practice, however, ¢! |%) is not a properly normalized state because ¢/ is not unitary. How-
ever, in a Jordan-Wigner encoding, assuming the impurity orbital is the first orbital in the orbital
order, ¢! +c, maps to ¢/ +¢, = oV, which is a bona fide unitary gate. Since the QPE circuit
contains gates that conserve the electron number, an input state c[, |¥) +c, |¥;) will be projected
onto eigenstates |¥,,) of H with N.+1 or N.—1 electrons (where N, is the number of electrons
in the ground state |¥;)). To obtain the histogram of the greater Green function, we need to take
into account only those measurements that stem from /N.+1 states. To select them, we just need

to measure the number of electrons in the final state.

Circuit implementation We now turn to the implementation of QPE. QPE is essentially a
multi-slit Mach-Zehnder interferometry experiment [32]. It can be thought of as a Young slit
experiment, with a number of slits exponential in the number m of ancilla bits. Since interfer-
ence experiments yield an accuracy scaling inversely with the number of slits, this will give a
1/2™ accuracy (Fig. 7(a)). Note that the m=1 circuit reduces to the Hadamard test circuit (or
two Young slits).

The construction of the phase estimation circuit is illustrated in Fig. 7(b). It consists in two
groups (registers) of qubits: the lower one, called the state register, for preparing a state |¥)
close to an eigenstate state |¥,,), and the upper one for m ancilla qubits (m = 3 on Fig. 7(b),
lower circuit), that will be used to read a m-bit estimate of F,,.

If |) = |¥,), the state after the wall of Hadamard gates and the controlled-U 2 k=1,...,m)
gates is

= ‘0) -+ 6iEa2k_1t‘1> 1 i m k—1
o) = X) ( % ® |0, = Y § Bt S |y @ [,).
k=1 b17~--bm
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Defining b = > 7" by 257! (the integer representation of the binary string (by, ..., b)), we
see that the state before the inverse Fourier transform is [W) = >, ap(Eo)|b) @ |¥,), with
a(Bn) = et

argument that 27 /( E,t) is an integer. That is, the first part of the QPE circuit creates a state on

. We further note that ayy2r/(g.1) = ap, if one assumes for the sake of

the ancilla register whose amplitudes are a periodic function of period 27/(E,t). The role of
the Fourier transform is to extract this period by producing the associated spectrum, which we
expect to be peaked at a frequency ~ E,t, from which we will extract the sought-after F,.

Let us check this intuition by doing the math: the inverse quantum Fourier transform performs
the (inverse) discrete Fourier transform (DFT) of the amplitudes ay: it yields ket »  a;(Eq)|J)
on the ancilla register, with

& (B) = DFT ()] = == 3 /"0 (E.)

_ 1 szl (23 27+ Eat) _ 1 sin ((J+Eat5;) )
2msin ((j+Eqt3-) 2m7)

= om
b=0

Defining ¢ = E,t, this function is peaked at j = k, with k, = |2™¢], as shown in Fig. 7(c).
We can thus take as an estimate of the actual phase ¢ (and thus E,):

. k¢
=12 (47)

with an error g5 — ¢ = 0¢/2™: we see that we are making an error 6¢/2™ on the actual phase ¢:
QPE does yield an estimate of the phase (and hence F,,) to an m-bit precision, as advertised.

Resource estimation To conclude this subsection, let us evaluate the depth (number of gates)
of the QPE circuit, neglecting the state preparation: the dominant contribution is given by the
controlled-U'%" operations (k=0 to m—1). Each U 2" operation (neglecting the controls, which
will result in an additional overhead) will at least require a depth of 2* as per the non-fast-

—iH(2%%) 5o the evolution time is o 2%), adding up to O(2™) gates.

forwarding theorem (U2" = ¢
The quantum Fourier transform requires O(m?) gates, which is negligible compared to the
controlled evolutions. Here, we did not specify the implementation of U itself, but we could
use Trotterization, which will introduce a dependence of the gate count on the number of terms
M and support of each term s as per Eq. (33), and achieve a t? depth (at first order). Qubitization
will achieve a linear dependence in ¢, with additional dependence on the coefficients of the sum-
of-unitaries decomposition.

Let us emphasize that the O(2™) depth is not to be considered an exponential cost: it helps
achieve an error ¢ = O(1/2™) on the estimate, so that the run time of QPE scales as O(1/¢), a
scaling known as “Heisenberg scaling”. This scaling can be shown to be optimal. It is quadrat-
ically better than the 1/¢? scaling of the Hadamard test method above, at the cost of a longer
circuit.

Let us finally point out that in both methods, the circuit depth (excluding state preparation)
scales polynomially with the system size, in contrast to the classical methods that all come with
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some sort of exponential scaling. As for the state preparation itself, it may require very long
circuits as discussed in subsection 3.2.1.

Alternative methods exist. [33] uses the resolvent form of the Green function, Eq. (18). Using
this form, we can transform the problem of computing the Green function to the solution of a

linear system of equations Az = bwith b = [ |¥) and A = Ey— H +w+1n (typical algorithms
1

Eo—H+w+in

then be computed with variations of the Hadamard test. Alternatively, [33] advocates the use of

for this task use QPE as a subroutine). The overlap with solution z = cl W) can

other advanced methods to compute the matrix inverse appearing in the resolvent formula.

3.3 The exponential wall of decoherence: noisy quantum states and gates

The algorithms presented above in principle allows for a tractable (polynomial) computation of
the (greater) Green function in real time or frequency, provided the ground or Gibbs state can
be prepared. .. and provided we are working with a perfect, that is, decoherence-free, quantum
computer. Here, we discuss the impact of decoherence.

Decoherence: density matrix and quantum channels In subsection 3.1, we described per-
fect quantum computers. The physical implementations of quantum computers that have be-
come available in the recent years differ from this ideal model. Their main constraint is de-
coherence, a phenomenon that stems from the entanglement of the quantum computer with
the outside world, often called the environment. Denoting by [¢);) a basis of the quantum
computer’s Hilbert space and |x;) a basis of said environment, the total wavefunction reads
W) = D_4; Cijlwi) @ |x;). It is however impractical to work with such an object given the
size of the environment. All average observables on the quantum computer, of the form (O) =
(Wir|O @ I|Wio;), can be computed from the so-called density matrix p = Trey (|%o) (Wrn|) of
the quantum computer (here Tre,, denotes the partial trace 3 _;(x;]| - - - [x;)) through the formula

(0) = Tr(p0), (48)

where the trace here is to be understood as the trace over the quantum computer’s Hilbert space.
Therefore, for all practical purposes, quantum states in the presence of decoherence will no
longer be described by a wavefunction |¥) but by a density matrix p, a unit trace and positive
definite matrix (as can be checked from its definition). Of course, the density matrix also cap-
tures so-called pure states (quantum states described by a single wavefunction |¥)): in a pure
state has density matrix p = |¥)(¥|. Similarly, the time evolution of quantum states (which
we conveniently described with unitary gates) will no longer be described by a unitary operator
|¥¢) = U|%;). Instead we will consider linear, completely positive and trace-preserving (CPTP)
mappings £ that act on the density matrix as

K
pr=E(p) = ExpiEf, (49)
k=1

with ), E,iE;c = I. A noisy gate (also called a quantum channel or CPTP map) is thus com-
pletely characterized by K operators { E;} known as Kraus operators. The trace preservation
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property ensures that the normalization of the state (Trp = 1) is preserved, while complete
positivity means that applying the channel £ on any subsystem (i.e applying £ ® Z with Z the
identity channel) keeps the total density matrix positive definite (applying a gate on, say, a sin-
gle qubit should keep the many-qubit quantum register physical). Note that when the Kraus
rank K is one, we revert to the unitary case as K| K; = I and p; = K, |0) (W | KT = |@) (@],

Standard error models Decoherence in quantum processors is usually described with a few
error metrics. An oft-used metric is the 77 relaxation time and the 75 dephasing time, which
are obtained through Rabi and Ramsey experiments, respectively. From 7}, one can extract a
typical relaxation probability pap(77) that enters the quantum channel £,p, dubbed amplitude
damping, that corresponds to this noise process. It is characterized by the Kraus operators

1 0
== == . 50
K, ( 0 T ) , Ko Pap O (50)

This means that with probability pap, the state relaxes from |1) to |0). Similarly, from 7}
and T one can compute a so-called pure-dephasing time T, = (1/T>—1/(21%)) !, which in
turn determines a pure-dephasing probability ppp(7,) that enters the pure-dephasing quantum
channel Epp. It is characterized by the Kraus operators

K, = vV 1—pep I, Ky = vV PpD O (51)

This means that with probability ppp, a superposition state |0)+-|1) is dephased to [0)—|1). A
similar channel, called the bit-flip channel (with o, to replace o, in K5), corresponds to bit-flip
errors.

Finally, let us introduce a widely used noise channel called the depolarizing channel that, con-
trary to the pure-dephasing and bit-flip channels, does not favor errors of one type (e.g. z or x)
over others. It is often defined (in the N-qubit case) as

Enlpt) = (1—pp) pt + ppl /2V. (52)

Namely, with probability pp the state is changed into the so-called completely mixed state I /2%,
where all quantum information is erased. (One can easily show that this channel has four Kraus
operators proportional to /, o, o, and o, respectively, with the same coefficient in front of
the Pauli matrices, hence the claim that it does not favor one error type over the others). The
depolarizing channel is often used for lack of more precise information as to the type of errors.
For instance, when one knows only the error rate of a certain unitary gate U(®), one often models
it as the composition £9) = &p o ngr)fect, with Ségr)fect(p) =UWpUWN,

Let us end this section by examining the overall effect of noise on a quantum circuit with [V,
gates that we assume to be plagued by the same depolarizing noise &p. The final state can be
written as

pr = EWe) 5 eWNe=1) 5 ... 6 5(1)(,01)- (53)
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Using the simple compositional noise model we just used, we easily get the expression
pr = (1=pp) " U |UT + (1= (1=pp)™) 1/2%,

with U = UWe) . gWe=1) ... 7() the perfect circuit. We can readily evaluate the so-called
fidelity of the noisy final state with the perfect final state [J;) = U|%;)

Flon 184)) = (@ilorlin) = (1=pp)™ + (1= (1=pp) ™) 1/2¥ w (1-pp) e 0¥, (58

The fidelity of the final state of a quantum circuit decays exponentially with the number of
gates [V, in this circuit. Conversely, this means that for a given error rate pp only circuits of
size N, < 1/pp are viable.

Today’s error rates are between 1% and 0.01% for the limiting operations (two-qubit gates),
meaning only circuits that contain between 100 and 10,000 of these gates are viable. This,
in practice, places very severe constraints on the quantum circuits that can actually be run on
current and near-term processors. For instance, this rules out the quantum phase estimation
circuits we discussed in subsection 3.2.3. Even simple Trotterization is limited to very short
times and hence poor energy resolutions. In fact, it already severely limits the preparation of the
ground state needed for the Green function. In particular, the use of adiabatic state preparation
methods presented in subsection 3.2.1, which require long circuits due to the long annealing
times, is prohibited.

To address this issue, new algorithms have been developed in the past decade to reduce the
number of requisite gates. This is the topic of the next section.

3.4 Near-term algorithms. Variational quantum algorithms
for ground states and for time evolution.

Current and near-term quantum processors come with drastic limitations in terms of the number
of gates that can be executed before decoherence sets in. Starting in the mid-2010s, algorithms
have been designed for these “noisy, intermediate-scale quantum” (NISQ [34]) devices.

3.4.1 Ground state preparation: the variational quantum eigensolver

The most prominent example is the variational quantum eigensolver (VQE, [35], see [36] for
a review), which is used to prepare ground states of Hamiltonians and measure their energy.
Like DMRG above (paragraph 2.2.1), VQE is a variational method that sets out to minimize a
variational energy Eg = (¥(6)|H|¥()), with |¥(0)) a family of variational states (also called
“ansatz”). The specificity of VQE is that the variational states are generated on a quantum
processor by a unitary operation U(6)

7(8)) = U(0)|Pinir),

where |®;,;) is usually state |0) ® |0)--- ® |0), and U(0) represents a quantum circuit with
parameters 6 (that may be, for instance, the angles of rotation gates R, (6)). Then, the energy
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(a) (b)
! parameters
]

Combine Eg ~ ¥; 4;P;
Propose new parameter 6
(gradient descent, ...)

Empirical average
PN =~ (5l Pilg)

U Measure P; (N shots)

Fig. 8: (a) Sketch of the variational quantum eigensolver (VQE) algorithm. (b) lllustration of
the barren plateau problem: the variance vanishes exponentially on average.

Elg of this state is measured on the quantum computer. As explained in subsection 3.1.4, this
measurement can be done by achieving a Pauli decomposition of H (see Eq. (30)) and then
summing up each contribution:

M

Eg = X(¥(0)|F|¥(6)). (55)

=1

Each expectation value (¥ (0)|P;|¥(0)) is then estimated by an empirical average over N; shots.
Based on the computed Fj, a classical optimizer updates the parameters 6. This is summarized
in Fig. 8(a). VQE comes with three main challenges: decoherence, the measurement of Fy, and
the variational optimization of the parameters.

Decoherence and the design of ansitze Decoherence, as we just saw, limits the size of the
circuit U (@) that can be run in VQE. The main advantage of VQE is its flexibility in terms of the
ansatz: given a fixed gate budget, one is free to pick the ansatz that best fits the problem at hand.
Ansatz construction strategies fall into two main categories: hardware-efficient ansitze [37]
and physics-inspired ones. The former aims at achieving the most expressivity given the gates
available on the quantum processor. Typically, hardware-efficient ansétze feature a repetition
of the following pattern: a sequence of one qubit rotations applied to each qubit, followed
by the hardware’s native two-qubit gate (there is usually only one) applied to all qubits pairs
compatible with the connectivity of the qubits. The rotations introduce variational parameters,
while the two-qubit gates generate entanglement. In fact, this construction guarantees a fast
growth of entanglement—an important feature given the limited coherence time. However, it
does not take into account the specifics of the Hamiltonian at hand. This is what the latter
approach does.

For instance, the Hamiltonian variational ansatz (HVA, [38]) draws inspiration from the adia-
batic quantum annealing algorithm (subsection 3.2.1): based on the intuition that one should
start with the ground state |®,) of a simple Hamiltonian H,, and deform the latter to the Hamil-
tonian at hand H, it uses a Trotterized form of the time evolution

M
|W<tannealing>> _ U(ta.nnealing)|¢0> — H e—i(l—tk/tannealing)HOtke*’itk/tannea]ingHtk’@O>
k=1
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(for t), = ktanneating/M) as an inspiration for the following variational form

M
w(0)) = [ [ e e 0" o) (56)

k=1

with 2/ parameters 6. (Then the operators e %20 and e~¥2++11 can be translated to quantum
circuits using the Trotterization tools we introduced in subsection 3.1.3). In the limit of large
M, the assignment 6o, = (1 — ¢ /tanncating )tk and Oogy1 = 17 /tannealing Of the parameters guar-
antees a convergence to the ground state. However, the premise of HVA is that the variational
optimization of @ can lead to a good enough approximation of the ground state in a much shorter
time (that is, compatible with the coherence time). .. providing a sort of shortcut to adiabaticity.
Typically, in the context of the AIM (Eq. (10)), a natural choice of the simple Hamiltonian is
Hy = Unyny — ud che, + >, ek azaaka because its ground state, after a Jordan-Wigner
encoding, is a computational basis state that can be prepared with o, gates only. Then, one can
replace H with H' =", _Vj, (a,tacg +h.c.).

Other approaches are targeted more specifically at fermionic states: for instance, the low-depth
circuit ansatz (LDCA, [39]) proposes to intercalate so-called Gaussian gates (which generate
only Gaussian states, namely states generated by Hamiltonians quadratic in the ¢ and c' opera-
tors) with non-Gaussian gates (corresponding to quartic terms or beyond).

Once the ansatz is picked, other optimizations to reduce the circuit depth and thus counter
decoherence is the choice of the orbital basis in which the states are expressed. For instance,
while a Fock state chvzl (cL)nk |0,...,0) expressed in the Fock basis can be generated, upon
Jordan-Wigner encoding, simply by applying o, gates to the qubits with occupations n; = 1,
if the same state is expressed in any other basis, longer circuits (possibly including entangling
gates) will be necessary. For a generic state |¥), the choice of the natural-orbital basis (that
diagonalizes the one-particle reduced density matrix D;; = <W\czcj |¥)) is supposed to yield the
most compact representation of the state and should therefore require shorter quantum circuits
[40—-42].

Finally, one can also build the ansatz iteratively instead of starting from a fixed ansatz: this is
what the ADAPT-VQE method ( [43,44]) does. At each step, it picks from a pool of gates the
gate that maximizes the gradient of the energy with respect to the gate’s parameter, therefore
ensuring the fastest convergence to the minimum.

A major mostly uncharted territory is the design of ansitze specific to the nature of the AIM
(beyond what the HVA does). In particular, the fact that the bath is non-interacting, which
allows for drastic simplifications in action-based impurity solvers (subsection 2.2.2), has not
been exploited so far.

The measurement problem VQE resorts to a classical summation of individual samples to
compute the variational energy g (Eq. (55)). This means that the statistical error will scale as
e = O(1/+/Ny), with N, the number of samples (shots). As explained before, this scaling of
1/€? of the run time is much less favorable than the 1/¢ scaling of quantum phase estimation.



DMFT with Quantum Computing 15.31

The prefactor of this scaling can be mitigated by many methods. One can, for instance, group
terms that commute with one another: they can be measured without regenerating the state.
One can also allocate the total shot budget based on the importance of each term in the Pauli
decomposition: larger coefficients |\;| in Eq. (55) should receive more shots. The optimal shot
allocation can be worked out [45] (and see [46] for an adaptive shot allocation strategy), leading
to a standard error on the mean that satisfies the upper bound:

SN
v/ Ny )

The numerator of the upper bound is referred to as the one-norm H. Proposals have been made

AEq < (57)

to minimize it by orbital rotations [47].

Another method called classical shadows [48] is based on the realization that measuring Fjg
by measuring each P, (or group thereof) individually on the final state |¥(0)) (or pg in the
general case where it is afflicted by noise) is a poor reuse of the information in pg. Classical
shadows thus first produce an estimate (called classical shadow) pg of pg by appending gates
drawn randomly for smartly chosen groups of unitaries to the circuit and then measuring along
the o, axis...and then return estimates (P;) = Tr(pgP;) to compute the energy Fg. By so
doing, the statistical error is still behaving as 1/+/N(as per the central limit theorem), but the
numerator can be mitigated (achieving, in some cases, a log(M) scaling, with M the number
of Pauli terms). Adaptations to fermionic settings have appeared recently, albeit not in a VQE
context [49].

The optimization problem Supposing the ansatz is short enough to beat decoherence, and
the energy £(6) can be measured to enough statistical accuracy, the VQE practitioner is still
facing the problem of finding the minimum of Ejy. The difficulty of this optimization task has
been a major focus of recent years.

On the practical side, methods have been developed to measure the gradients required in gradient-
based minimization methods, like the gradient descent method, which updates parameters through

0iy1 =0, — aVGE(Oi)a (58)
with a learning rate o and [V E(0)], = 857@ = % (Uy| H|Wp). It turns out that if the paramet-

ric gates used in the ansatz are of the form Uy, (6) = e~"%/2F% with P? = I, then the following
identity (called “parameter shift rule”) can be easily derived

OE(0) 1
= §(E(0k+7r/2) — E(0p—7/2)), (59)

where F(0;+«) is shorthand for E(6,,...,0k+a,...,0;). Estimating gradients is therefore
relatively straightforward. It however requires a number of evaluations proportional to the

number L of parameters, a major overhead compared to the O(1) cost of computing gradients
in classical deep neural networks using the backpropagation algorithm [50]. Other machine-
learning-inspired methods like natural gradients can also be implemented [51], albeit at a much
larger cost since the required quantum geometric tensor necessitates O(L?) energy evaluations.
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On the more formal side, the potential landscape £'(0) (and more specifically its variance) has
been studied for some classes of variational circuits U (6) and observables H. The empirically
observed vanishing of gradients in large regions of the variational space, dubbed “barren plateau
problem” [52] is now understood as a curse of dimensionality issue [53,54]: the larger the di-
mension of the effective space explored by the variational search, the more concentrated F/(6)
around its mean and therefore the smaller the gradients (on average, as illustrated in Fig. 8(b)).
This issue is particularly pressing for the hardware-efficient parametrized circuits we introduced
above: if they are deep enough, the ensemble of unitaries U(8) is very close to the group of
Haar random matrices and the variance ((E(0) — (E (6)))*) over the parameter landscape van-
ishes exponentially with the number N of qubits. In other words, the more expressive, the less
trainable parametrized circuits become. On the other hand, physics-inspired ansdtze, which
usually come with more structure, could suffer less from this issue. Note also that the existence
of barren plateaux is an average phenomenon: on average, energies are (exponentially) close to
their mean. However, non-zero gradient portions of the parameter space exist (see circled region
in 8(b)). The challenge lies in finding them. In particular, finding a good starting point 8¢ for
the optimization appears crucial. There again, physics-informed choices (by, e.g., perturbation
theory or classical pretraining of the variational ansatz) could play a crucial role. Adaptive tech-
niques like the aforementioned ADAPT-VQE methods, or other ways of solving the eigenvalue
problem (see e.g [55]) could also mitigate this issue.

3.4.2 Time evolution: variational circuits for time evolution.

The Trotter circuits described in a previous section are often too long compared to the available
number of gates given the coherence time. Methods, like “variational quantum simulation” [56],
have been designed to train variational circuits to perform a given time evolution. They are a
simple adaptation of the variational principle used in VQE to the time-dependent case: given
a variational state |7 (0(t))) = U(0(t))|Wnit) (|inie) = c|¥) for the greater Green function),
one can use the McLachlan variational principle

d
min § H (— + iH) |W(0(t))>H
dt
to write a differential equation for the parameters 6(t)

ZMG_

with M; ; = Re ( ag(t))l a|wgz(t)) ) and V; = Im (( (6(t))| H ALOm) 9(t))>) Both quantities can
be evaluated with dedicated quantum circuits similar to the Hadamard test [57,58]. Interest-
ingly, the aforementioned natural gradient approach can be obtained by invoking the McLachlan

principle with imaginary times.
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3.4.3 Reducing the effect of imperfections: error mitigation.

All the methods above aim at creating shorter circuits, but still suffer from decoherence. A
variety of techniques known as error mitigation has been developed over the years to counter the
exponential decay of fidelity (Eq. (54)). They generically trade a systematic bias generated by
decoherence for an increased classical cost—that essentially helps recover the lost information.
A representative example of this tradeoff is probabilistic error cancellation [59, 60]. To sup-
press the bias in energy in a noisy VQE, caused by the deviation between the noisy energy
Eroisy = Tr(peH), with pg given by Eq. (53), and the perfect energy Eperrear = (Us|H|¥5),

one decomposes the “perfect” channels & (k

perfect(p) as a linear combination of the actual (noisy)

channels £*)(p) that are realized in the experiment

k k
Eea =D 0 &, (60)
!
with the underlying assumption that these noisy channels form an independent family, and the
> ql(k) = 1 to preserve the trace-preserving character (but the ql(k) may be negative). The

perfect energy can thus be decomposed as a very large sum, which is sampled through Monte-
Carlo

perfect Z q(l) o Ng Tr(HglN o glN e gll (pl))
...y,
=1 > pl e ply s, ) Tr(HE, 0 &, 0--En(p)) (6D
.. zNg
N Z Tr(Hgl(z) o ggé)gil o Slii) (pi)). (62)
Here, the probabilities pl( ) = ql / Yo ql, are introduced to deal with the possible negativity

of the q .= 11, i ‘Zz' and s(ly,...ln,) = Y, mgn(ql(k)). The advantage of the

summand of Eq. (62) is that it can be estimated with the noisy computer at hand by running a

circuit with (noisy) gates 5< .., E (z) and measuring [ at the end, resulting in an unbiased

estimate of Eperseci! The price to pay is, however twofold: one needs to know precisely the noise
models of the hardware to be able to perform the decomposition of Eq. (60), which requires
quite expensive process tomography experiments. More fundamentally, the estimator comes
with a statistical uncertainty that scales with the [ factor, which can be rewritten as I' =

fﬂV:"l (1+2n;,), with the so-called “negativity” nx = >, g ql(k). To get an intuition how it
scales, let us suppose that all gates have the same negativity 7. Then

I~ ¥1e, (63)

In other words, to get a fixed statistical error bar € oc I/ /N, one needs to scale the number N
of samples as I'? = e*"e_ namely exponentially with the number of gates! This essentially tells
us that to fight against the exponential loss in fidelity (Eq. (54)), we need to pay an exponential
price. In practice, this exponential can be manageable provided the negativity is not too large.
The better the hardware, the closer 7 to unity, the lower the sampling overhead.
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4 Conclusion: state of the art, challenges and ways ahead

The tools we just introduced have been used in the past 10 years to solve the impurity model of
DMEFT with the help of quantum processors. Table 1 summarizes the various attempts. After the
original proposal by [61] and [62], most works [63—-66,68,71,73] focused on the simplest DMFT
scheme, namely two-site DMFT [76], which consists in limiting the bath to only one bath site,
requiring only 4 qubits. Most works used VQE in combination with the Hadamard test circuit
we introduced before, with various ansitze and methods to optimize the time evolution needed
in the Hadamard test. The Hadamard test method is replaced by a Lanczos-type algorithm
in [69,75] that builds the Krylov states using a variational ansatz |x,,) = U(0,,)|®Pii)-
Driven by the optimization issues of variational methods, quantum subspace expansions are
also proposed, in an impurity model context, by [70]: the Krylov bases (whether for the ground
state or for the Green function, see paragraph 2.2.1) are constructed not in the full Hilbert space
but in a reduced subspace built with states obtained by Trotter iterations: |1y.) = U(5t)¥|®ini),
with U(t) = e~ #amdt The conjecture of the method is that Trotter iterates will yield a good
enough subspace of the full Hilbert space to perform the Lanczos method in. The first (ground
state) Lanczos iteration can also be replaced by a purely classical method, as advocated in [72]:
there, DMRG is used to compute the ground state in the matrix product state form. The MPS is
converted to a quantum circuit and then Trotter iterates |i;) are generated on top of this state.
The above quantum Krylov variants require the computation of various matrix elements of the
Trotter iterates |+/;), which incurs the aforementioned 1/¢? overhead. [77] proposes a way to
avoid this overhead by simply sampling bitstrings s; 5, from the |1;)’s and building the classical
representation of / in the subspace corresponding to these bitstrings. [77] then classically finds
the ground state energy by diagonalizing the restriction of H to this subspace for systems of up
to 41 bath sites (but does not compute the Green function).

[63] looks at a nonequilibrium setting, which requires extending the formalism we introduced
to Keldysh Green functions.
Alternative embedding techniques—which can be regarded as low-energy approximations of
DMFT [6]—have been used, motivated by the fact that these techniques require an impurity
problem with fewer bath sites (/V, = N,), and require not the full time-dependent Green func-
tion, but only the one-particle reduced density matrix (essentially the £=0 Green function). This
includes rotationally-invariant slave bosons (aka Gutzwiller [67,40]) and density-matrix embed-
ding theory [78—80]. Finally, simpler slave-particle methods like Zs slave spins were used to
reduce the Hubbard model to even simpler (namely spin-based, as opposed to fermionic) effec-
tive models [81].
The current state of affairs is that the small sizes considered in the aforementioned publications
are not yet large enough (except perhaps for [72,77]) that ground state preparation issues with
VQE (like barren plateaux) become severe, so that whether a variational preparation of low-
energy states of the AIM with quantum methods can succeed is still an open question. As
for the time evolution needed to compute the Green function, the decoherence rates of current
processors have so far prevented one from reaching numbers of bath sites competitive with
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Ref. | N. | Ny State Green function | Noisy| Physical Remark

preparation method emul.| implem.

[62] | any| any | Adiabatic Hadamard test No No Generic proposal.

state
preparation
617 | 1 | 10 N-A Hadamard Yes | Ions (th) Nonequilibrium:
(Trotter) kinetic ramp
[63] | 1 1 Exact Hadamard with | Yes SC (th) Study of noise in
Trotter bath.
[64] | 1 1 | VQE (HEA) Lehmann No | SC + Ions No
(excited-VQE ) (exp) self-consistency
[65] | 1 1 Exact and Hadamard Yes No Variational
VQE (Trotter) compression.
[66] | 1 1 VQE Hadamard No | SC (exp)
(adhoc) (Trotter)
671 ] 1 1 | VQE (UCC) N/A No | SC (exp) | Periodic Anderson
model. Parity
mapping
[68] | 1 1 VQE Hadamard No | SC (exp)
(adhoc) (fast-forwarding)

[401 | 2 | 2 VQE N/A Yes No RISB.
(adhoc)

[69] | 1 3 | VQE (HEA) Krylov No No QSGW+DMFT
variational LayCuO,
algorithm

[70] | 1 7 Quantum Quantum No No
subspace subspace

expansion expansion
[711 | 1 1 VQE Lehmann Yes | SC (exp)
(symmetric (excited-VQE)
HEA)

[72] | 3 | 17 Matrix Quantum No No SrVOs, chain
product subspace geometry.

states expansion

[73] | 1 1 VQE ([66]) Hadamard No No

(Trotter)

[74] | 1 6 | VQE (HEA, Lehmann No SC (exp) Cay,Cu0O,Cl,,
classical (qEOM) chain geometry
optim.)

[75]1 | 1 6 | VQE (sym.- Krylov No No

preserving variational
ansatz) algorithm

Table 1: Summary of early implementations of impurity solvers with quantum computers, sorted
in chronological order. N.: number of impurities. Ny: (maximum) number of bath sites. SC
stands for superconducting qubits. All DMFT computations except those on materials are done
on the Bethe lattice. The encoding is always Jordan-Wigner, unless otherwise stated.
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the best classical methods: larger bath sizes mean that larger evolution times, and thus larger
circuits, are needed, at least with the Hamiltonian representation of the impurity model we
worked with so far.

The bath size of a Hamiltonian-based representation of the AIM of DMFT will likely remain a
major issue. Large bath sizes (many Dirac delta peaks, as in (12)) are needed to represent the
spectral features of the hybridization function, and these in turn entail large numbers of qubits,
and thus large circuits. From a nonequilibrium perspective, one can also argue that reaching
long times requires large baths to avoid finite-size effects. In principle, the fact that the bath is
noninteracting could be exploited to simplify circuits or perhaps reduce the number of qubits,
but this has not been attempted yet, to the best of our knowledge—other than switching from
DMFT to simpler embedding techniques like RISB and DMET, which can be seen as well-
defined prescriptions for truncating the bath, albeit with access only to one-particle reduced
density matrices (as opposed to frequency-dependent Green functions).

An alternative, promising route is to use another representation of the impurity model. For
instance, open-system representations of the impurity model have been proposed [82—84] that
use a dissipative bath instead of a noninteracting closed bath: each bath site can exchange
electrons with an environment. The rate of dissipation /A (as well as the usual other hybridization
parameters) can be fixed by matching the hybridization function not with a sum of Dirac peaks
(Eq. (12)) but of Lorentzians of width A

R Vi

AMw) = ; Py p——" (64)
On a classical processor, this allows to use fewer peaks to fit the same hybridization function
(with many possible sophistications of the open-system representation [85]), and then, using a
master equation-based solver, compute the corresponding Green function. Alternatively, one
could use a noisy quantum processor to perform the corresponding dissipative time evolution
[86]. This way, the natural decoherence of the processor could, at least partly, be used to mimic
the physics of impurity electrons in solids.
This open-system representation may also solve a deeper issue of quantum algorithms for impu-
rity models, namely the preparation of a ground (or low-energy) state. Working with dissipative
models changes the perspective to preparing the steady state of an open quantum system. .. In
such a context, more noise could help reach this steady state faster.
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