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1 Introduction

For a classical observer the empty space, i.e., the vacuum, is perfectly regular with perfect
translational and rotational symmetry. The vacuum is homogeneous and isotropic. Inserting
particles into the vacuum breaks this perfect symmetry. However, if the particles are arranged
in a regular fashion, there is still some symmetry in the system. For example, in case of perfect
crystals, infinitely large, there is a discrete translational and a point group symmetry. In case of
a single molecule or a cluster of molecules a discrete point group symmetry might be present. In
the fascinating word of quasicrystals, the infinitely large system is not translationally symmetric
but a certain point group symmetry is still present. These systems are regular, predictable
and often exactly tractable in a mathematical description [1]. These regularities have been an
inspiration for artists and architects for centuries around the word.

If there is a regularity in the nature there must be an irregularity as well [2]. Indeed, investigating
systems very often one finds irregularities in the arrangements of atoms or molecules [3]. The
hardest system in the nature, a diamond, is an arrangement of carbon atoms in a cube repeated
infinitely many times in space. The perfect diamond is transparent and colorless insulator. If
some randomly chosen carbons are replaced by nitrogens the diamond becomes a conductor,
and is used in electronics, e.g., in transistors. When randomly substituting boron atoms for
carbons a diamond becomes blueish but randomly deforming the perfect bond structure makes
the crystal reddish. These defects in a diamond are welcome, making the crystal more rare and
more visually intriguing and increase its price on the stock as well.

Irregularities are typically unrepeatable. But are present in most real physical systems. Their
presence changes properties of the systems, sometimes along our intention but sometimes
against it. As theoretical physicists we want to learn how to describe irregular systems mathe-
matically [4].

In this lecture notes we will focus on some narrow aspects of irregular systems, namely on
correlated electron (fermion) systems, and present how to combine the well know dynamical
mean-field theory (DMFT) with mathematical theories tackling randomness. We start with
defining various types of disordered systems on a model level within tight-binding approxima-
tions and discuss mathematical/statistical tools to describe such systems. We introduce systems
with a binary disorder as well as with a continuous disorder. Both represent different situa-
tions in solid state physics. Next we will discuss a combination of the dynamical mean-field
theory with the coherent potential approximation (CPA) for disordered systems. These are
two dynamical mean-field type approximations to finite dimensional systems and are exact in
infinite dimensions. As we will emphasize, both DMFT and CPA treats correlations and dis-
order on equal footing. We present two surprising results concerning the Curie temperature
and the Mott-Hubbard metal-insulator transition (MIT) at fractional filling in the binary alloy
systems. Further we will introduce the Anderson transition, a different kind of MIT triggered
by randomness in the system. The DMFT is extended in such manner that the most probable
realization is taken into account. This is a typical medium theory (TMT) which is combined
with the DMFT, instead of the CPA, and predicts phase diagrams with different metallic and in-
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sulating phases in correlated electron models, such as Hubbard and Falicov-Kimball ones. We
will end with some short discussion of other developments where DMFT is used for disordered
electrons, fermions and bosons, and comment on present approaches toward the many-body
localization.

2 Disordered systems, random variables, averages

2.1 Models of disorder electrons

We shall consider model systems describing electrons moving in irregular crystals. Following
the pioneering work of Anderson [5] we use the standard model, today known as the Anderson
model, represented by a second-quantized Hamiltonian

ĤA =
∑
iσ

εi â
†
iσâiσ +

∑
ijσ

tij â
†
iσâjσ , (1)

where âiσ (â†iσ) is an annihilation (creation) operator of an electron at lattice site Ri, in a one
particle Wannier basis, and with a spin σ = ±1/2 (in units with ~=1). Here the creation and
annihilation operators obey standard anticommutation relations. The first term represents on-
site energies εi and the second one a hopping tij of electrons between different lattice sites. It
is the simplest tight-binding model describing electrons on a lattice. The interaction between
electrons is absent for the moment.
For a perfectly regular uniform lattice system the on-site energies are the same on all lattice sites,
i.e., εi = ε, and the hopping amplitudes tij are the same for the sites with the same distance
‖Ri−Rj‖. For irregular, non-uniform systems the on-site energy may depend on the lattice site.
For example, it can be a random number or it can be different but changed in a regular fashion.
For example, in the presence of a uniform electric field along a one dimensional chain, the on-
site energies are εi = aE0i, where a is a lattice constant and E0 is an electric field intensity. In
the following we are interested in cases where εi are random variables. Typically it is assumed
that the probability distribution function factorizes and the random variables εi are independent

P (ε1, ..., εNL) =

NL∏
i=1

p(εi), (2)

whereNL is the number of lattice sites. In the original Anderson model [5] the hopping part was
assumed to be regular. Nevertheless, one can extend the model by assuming that tij are random
variables drawn from a certain probability distribution function. In the following we assume
that any irregularity and randomness in the system appears due to random on-site energies εi.
The Anderson model (1) does not include any interaction between electrons. The simplest way
to add an interaction is to write a Hubbard like Hamiltonian with the random on-site energies

ĤAH =
∑
iσ

εi n̂iσ +
∑
ijσ

tij â
†
iσâjσ +

∑
i

Ui n̂i↑n̂i↓, (3)



8.4 Krzysztof Byczuk

where n̂iσ = â†iσâiσ is the particle number operator and the projection of the spin is denoted by
↑ (↓) symbols. This Anderson-Hubbard (AH) model describes itinerant electrons on a lattice
and interacting when two fermions with opposite spins are occupying the same lattice site. The
energy penalty Ui > 0 again can be a random variable, although in the Hubbard model and in
the following notes it is assumed to be uniform, the same on all sites, Ui = U.
Another model with interacting fermions is the Falicov-Kimball one, a simplified version of
the Hubbard model with particles with one spin projection immobile. The Anderson-Falicov-
Kimball (AFK) Hamiltonian reads

ĤAFK =
∑
i

εi n̂i +
∑
ijσ

tij ê
†
i êj +

∑
i

Ui n̂if̂
†
i f̂i + εf

∑
i

f̂ †i f̂i, (4)

where n̂i = ê†i êi is the particle number operator for itinerant spinless fermions and f̂i (f̂ †i ) are
annihilation (creation) fermion operators for immobile particles with on-site energy εf .

2.2 Average over disorder, most probable value

Imagine a system, described by one of the above Hamiltonian, with given and fixed on-site ener-
gies {εi}i=1,...,NL . If we solve it exactly we can get information, for example, on thermodynam-
ics of the system. The grand-canonical partition function Ξ(T,NL, µ; {εi}) = Tre−β(Ĥ−µN̂),
where µ is the chemical potential, β = 1/kBT is the inverse of temperature and kB is the
Boltzmann constant, will depend on particular realization of the on-site energies {εi}. The
grand-canonical thermodynamic potentialΩ(T,NL, µ; {εi}) = −kBT lnΞ(T,NL, µ; {εi}) and
all other thermodynamic functions will be system dependent as well.
To overcome this difficulty, and to get some reliable information about the considered system
we take a statistical average over {εi}. In most situations it is the arithmetic average, i.e., for
an observable O({εi}) we determine

〈
O({εi})

〉
=

∫ NL∏
i=1

O({εi}) p(εi) dεi (5)

according to the central limit theorem [6], for infinitely many (NL →∞), independent random
variables {εi}. It is a well founded approach for systems which are self-averaging. It means
that the sample-to-sample fluctuations

∆NL(O) =
〈O2〉 − 〈O〉2

〈O〉2
(6)

vanish when NL →∞.
In taking an average there are two possibilities, one can take the average of the grand-canonical
partition function

〈
Ξ(T,NL, µ; {εi})

〉
. This situation is called an annealed disorder. An-

other option is to average a physical quantity, like the grand-canonical thermodynamic potential〈
Ω(T,NL, µ; {εi}

〉
. This case is named a quenched disorder [7]. Unless it is specified other-

wise, we will consider here only a quenched type of the disorder.
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In nature most systems are self-averaging. Then the ergodic hypothesis is valid and we can
use a standard statistical mechanics and arithmetic averaging over the disorder to study such
systems in equilibrium. The early work of Anderson [5] put attention to non-ergodic systems,
where the concept of statistical averaging does not hold. Anderson described the situation,
where in a disordered system the one-particle wave function is localized in a finite subspace
of the system. Then, in the dynamical unitary evolution, the quantum system cannot penetrate
the whole phase space and cannot probe all possible disorder realizations. Such a system is
named an Anderson insulator. The ergodic hypothesis cannot be applied and sample-to-sample
fluctuations are finite even in the thermodynamic limit. To describe mathematically such non-
self-averaging systems we need to focus on the most probable values of observables studied on
them. This is a typical behavior of the system and the one expected to occur in practice.
The prediction of the most probable behavior is difficult. It requires the whole histogram or the
whole probability distribution function for a give observable. It requires to solve the Hamilto-
nian for very many realization of the disorder. For noninteracting models it is demanding but
possible, e.g. [8]. For interacting models in large systems it is challenging even today to get
good statistics.
Therefore we take a different approach and use a different way of statistical averaging over
disorder. We will use a geometric average which belongs to generalized means in the probability
theory.

2.3 Generalized mean

Consider a single random variable y and a function f = f(y), which is invertible, i.e., f−1(y)
exists. The generalized f -mean (average) is defined as〈

y
〉
f
= f−1

(
〈f(y)〉

)
, (7)

where the average inside is the arithmetic average
〈
f(y)

〉
=
∫
dy f(y) p(y) with the probability

distribution function p(y) [9]. The f -mean satisfies the usual axioms, required to hold for any
useful mean in mathematics [9]. In particular, if we select f(y) = ln y, such an f -mean is the
geometric mean or geometric average, i.e.

〈y〉ln = e〈ln y〉. (8)

The popular average in mathematics is the Hölder mean, where f(y) = yp and p is a number.
This Hölder, or p-mean

〈y〉p =
[∫

dy yp p(y)

] 1
p

(9)

is parametrized by a single number p. Like the arithmetic mean, the Hölder mean is a homoge-
neous function of y and has a block property, i.e., 〈xy〉p = 〈x〉p〈y〉p if x and y are independent
random variables. In particular, if p=−∞ this mean gives the possible minimum of y. Other
choices, p=−1 gives a harmonic mean, p=0 gives the geometric mean, p=1 gives the arithmetic
mean, p=2 gives a quadratic mean, and p=∞ gives the possible maximum of y.
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Which mean gives the best approximation, in particular when the disorder is very strong and
drives the system far from the self-averaging limit, is a matter of investigation. For example,
many biological and social processes are modeled by the log-normal probability distribution
function, for which the geometric average gives the most probable value of the random variable
[10, 11]. The same is also true for conductors in series with random resistances.

3 Real-space dynamical mean-field theory

The coherent potential approximation was formulated in 1960’s [12], and much earlier than the
dynamical mean-field theory, developed in 1990’s [13]. However, there are many similarities in
these two approaches and, in fact, for correlated electrons models with local disorder the CPA
and the DMFT are combined within a singe theoretical approach.
A common denominator between CPA and DMFT is that both are local theories, with local
self-energies, depending only on frequencies, and they are playing the roles of the mean-fields.
Since they are frequency dependent, the name dynamical mean-field comes. Both theories
are comprehensive, thermodynamically consistent and conserving in the Kadanoff-Baym sense
[14]. Finally, both are exact in the infinite dimensional limit, or equivalently, in systems with
infinite number of nearest neighbors on the lattice [15].
The derivation of the DMFT from the high dimensional perspective was discussed in the Jülich
lecture series earlier [16–19] and we do not want to repeat it here. Instead, we offer a straight-
forward presentation how to use the DMFT for lattice systems with inhomogeneous potentials
or random impurities.
The main idea hidden behind the DMFT and the CPA approaches is the mapping of a lattice
system, homogeneous or inhomogeneous, onto a local impurity (site) problem, where the im-
purity (site) is coupled to an effective bath. This bath, like a mean-field, mimics the properties
of the rest of the lattice on average.
We consider the Anderson-Hubbard model (3) now. There are various formulations, but the
most canonical one and useful for our lecture is the approach where the zero-dimensional single
site problem, representing the site i-th, is given by a single-impurity Anderson model (SIAM)
with the Hamiltonian

Ĥ
(i)
SIAM = εi

∑
σ

ĉ†iσ ĉiσ + U ĉ†i↑ĉi↑ ĉ
†
i↓ĉi↓ +

∑
kσ

(
Vkiσ ĉ

†
iσ ĉkσ + V ∗ikσ ĉ

†
kσ ĉiσ

)
+
∑
kσ

ε
(i)
kσ ĉ

†
kσ ĉkσ. (10)

The first two terms, those with the εi and U parameters, are the same as the local terms within
the Anderson-Hubbard model (3). The third term represents a hybridization, i.e., a possibility of
hopping the electron from the effective bath onto the site i-th with the amplitude (hybridization
matrix element) Vkiσ and the reversed process. The last term describes a property of a single
particle bath with a dispersion relation ε(i)kσ. All creation and annihilation operators are fermionic
for spin 1/2 particles and k is a momentum corresponding to a referenced homogeneous lattice.
We note that the SIAM Hamiltonian (10) is defined for each site i of the lattice, where the
energies εi are different in principle. The hybridization Vkiσ and the dispersion relation ε(i)kσ are
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not yet known and need to be derived self-consistently. Note that they are spin σ dependent
when the magnetic systems are considered.
The common quantity that can be derived for the lattice problem (3) and for the SIAM Hamil-
tonian (10) are the diagonal and local Green functions, respectively,

Glatt
ijσ(ω) = −i

∫
dω eiωt

〈
T âiσ(t)â

†
jσ(0)

〉
(11)

and
Gimp
iiσ (ω) = −i

∫
dω eiωt

〈
T ĉiσ(t)ĉ

†
iσ(0)

〉
, (12)

where t is a time and ω is a real frequency [20]. The self-consistency condition requires that
both are the same, i.e.

Glatt
iiσ(ω)

!
= Gimp

iiσ (ω) ≡ Giσ(ω). (13)

The local Green function for the SIAM is given by

Gimp
iiσ (ω) =

1

ω + µ− εi −∆iσ(ω)−Σ imp
iσ (ω)

, (14)

where

∆iσ(ω) =
∑
k

|Vkiσ|2

ω − ε(i)kσ

(15)

is the so called hybridization function andΣiσ(ω) is the self-energy. When U=0 the self-energy
vanishes. Similarly, the diagonal Green function for the lattice problem is given from the real-
space Dyson equation [

Glatt
ijσ(ω)

]
=
[[
Glatt,0
ijσ (ω)

]−1 −Σijσ(ω)
]−1

, (16)

where Glatt,0
ijσ (ω) is the Green function for fermions on the lattice in the absence of interactions,

i.e., U=0, and Σijσ(ω) is the self-energy. Within the DMFT it is assumed, and shown to be
exact in the infinite coordination number limit, that Σijσ(ω) = δijΣ

latt
iσ (ω) is diagonal. For

homogeneous systems, when the Fourier transform is applied, this condition is equivalent to the
statement that the self-energy is momentum independent. The self-consistency condition (13)
now takes the form

Σ latt
iσ (ω)

!
= Σ imp

iσ (ω) ≡ Σiσ(ω). (17)

The set of equations (10)–(17) forms the real-space dynamical mean-field theory (R-DMFT)
[21]. Determining self-consistentlyΣiσ(ω) together with Vki and εik for each lattice site i allows
us to determine all diagonal Green functions Glatt

iiσ(ω) and other single-particle properties for a
many-body lattice system.
The R-DMFT equations, though very general and applicable for homogeneous and for inho-
mogeneous lattices of any type, are difficult to use, in particular if the system size NL is large.
Indeed, if we deal with random inhomogeneities, the R-DMFT equations must be iterated for
many realization of the disorder. It requires that the most difficult and time consuming part, the
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SIAM problem (10) needs to be solved NL×Nit×Ndis times, where Nit is the number of itera-
tions to get a self-consistency for a given realization of the disorder and Ndis is the number of
disorder realizations. This obstacle motivates to search for an average description of the system,
reintroducing back homogeneity and utilizing again the Fourier transformation between the real
Ri and the reciprocal k spaces.

4 Averaged DMFT

In averaged descriptions of the system we need to take a statistical average of a physical observ-
able on various realization of the quenched disorder. This will lead to the averaged dynamical
mean-field theory (A-DMFT). On a one-particle level the spectral functions or the density of
states (DOS) are such useful observables. The local density of states (LDOS) is defined as [20]

Aiσ(ω) = −
1

π
ImGiσ(ω+i0

+), (18)

where now the Green function Giσ(ω) is determined from the simplified SIAM, where the
hybridization matrix and the bath dispersion relations are site independent, i.e.

ĤSIAM = εi
∑
σ

ĉ†iσ ĉiσ + U ĉ†i↑ĉi↑ ĉ
†
i↓ĉi↓ +

∑
kσ

(
Vkσ ĉ

†
iσ ĉkσ + V ∗kσ ĉ

†
kσ ĉiσ

)
+
∑
kσ

εkσ ĉ
†
kσ ĉkσ. (19)

Taking one of the generalized averages, the p-mean, we obtain the average density of states

Aσ(ω) ≡
〈
Aiσ(ω)

〉
p
=

[∫
dεiAiσ(ω)

p p(εi)

] 1
p

. (20)

To recover the average Green function, needed to complete the self-consistency DMFT loop,
we use the spectral representation theorem [20] and get

Gσ(ω) ≡
〈
Giσ(ω)

〉
p
=

∫
dω′
〈Aiσ(ω′)〉p
ω − ω′

. (21)

We note that for p=1-mean, i.e., arithmetic averaging, the Hilbert transform leads directly to

Garith
σ (ω) =

〈
Giσ(ω)

〉
p=1

=

∫
dεiGiσ(ω) p(εi), (22)

and the real and imaginary parts of the Green function can be averaged independently. For other
p-means this linear property does not hold and one must explicitly use the Hilbert transform (21)
as a step between.
We will be particularly interested in the geometric averaging when describing the Anderson
localization. Then the averaging of the spectral function takes explicitly the form

Ageom
σ (ω) ≡

〈
Aiσ(ω)

〉
p=0

= e
∫
dεi lnAiσ(ω) p(εi). (23)

Now, since the average Green function is site independent, i.e., homogeneous, and the self-
energy is uniform, i.e., site and k independent, we can use the Fourier transform and write the
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self-consistency condition that the average Green function Gσ(ω) and the one of the homoge-
neous system with the self-energy are equal, i.e.

Gσ(ω)
!
=
∑
k

1

ω − Ek −Σσ(ω)
=

1

ω + µ−∆σ(ω)−Σσ(ω)
, (24)

where Ek is the dispersion relation for the non-interacting particles in the reference homoge-
neous lattice, and the homogeneous hybridization function is

∆σ(ω) =
∑
k

|Vkσ|2

ω − εkσ
. (25)

Indeed, the equations (18)–(25) constitute a close set of the A-DMFT equations that can be
solved iteratively until the self-consistency is reached. For systems without disorder this set of
equations is exactly the same as in the standard DMFT.

5 DMFT and CPA

5.1 CPA for non-interacting systems

It is instructive to recover the standard CPA equation from the A-DMFT equations. When the
system is non-interacting (U=0) the Hamiltonian (19) can be solved exactly, e.g., by means of
the equations of motion, and we find that the local Green function is

Giσ(ω) =
1

ω + µ−∆σ(ω)− εi
. (26)

The self-consistency equation (24) reads

Gσ(ω) =
∑
k

1

ω − Ek −Σσ(ω)
=

∫
dεi

1

ω + µ−∆σ(ω)− εi
p(εi) (27)

or
Gσ(ω) = G(0)

σ

(
ω−Σσ(ω)

)
=

∫
dεi

1

ω + µ−∆σ(ω)− εi
p(εi), (28)

where
G(0)
σ (ω) =

∑
k

1

ω + µ− Ek

(29)

is the Green function for non-interacting and homogeneous system. Using the RHS of the
Eq. (24) we see that

G(0)
σ

(
ω−Σσ(ω)

)
=

∫
dεi

1
1

G
(0)
σ (ω−Σσ(ω))

−
(
εi−Σσ(ω)

) p(εi), (30)

and by arranging terms we finally get∫
dεi

εi−Σσ(ω)

1−
(
εi−Σσ(ω)

)
G

(0)
σ

(
ω−Σσ(ω)

) p(εi) ≡ ∫ dεiTiiσ(ω) p(εi) = 0, (31)
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where the T -matrix

Tiiσ(ω) =
εi−Σσ(ω)

1−
(
εi−Σσ(ω)

)
G

(0)
σ

(
ω−Σσ(ω)

) (32)

describes multiple-scattering processes on the i-th impurity site with an effective potential
εi−Σσ(ω). This is exactly the CPA self-consistency equation on vanishing of the average T -
matrix defined with respect to the mean environment. Thus we see that the A-DMFT with
p=1-mean, arithmetic averaging, reduces to the coherent potential approximation in the nonin-
teracting limit.

5.2 Binary alloys and alloy band splitting

In a binary alloy, two different atoms are distributed randomly on lattice sites. It is modeled
by assuming that one of the atom has an atomic energy εA = −∆/2 and the other εB = ∆/2,
∆ ≥ 0. Since they are distributed randomly the probability distribution function takes the form

p(ε) = xAδ(ε−εA) + xBδ(ε−εB), (33)

where xA = NA/NL and xB = NB/NL are the concentrations of the A and B atoms, respec-
tively. Note, xA+xB = 1. This binary alloy distribution is very special: only two energies
are allowed. It leads to the alloy-band splitting. Namely, from the localization theorem (the
Hadamard-Gerschgorin theorem in matrix algebra) it is known that if the Hamiltonian (3), with
the binary alloy distribution for εi, is bounded, then there is a gap in the single particle spectrum
for sufficiently large ∆ � max

(
|t|, U

)
[4]. Hence, at ∆ = ∆c the DOS splits into two parts

corresponding to the lower and the upper alloy subbands with centers of masses at the ionic
energies εA and εB, respectively. The width of the alloy gap is of the order ∆. The lower and
the upper alloy subband contains 2xANL and 2xBNL states, respectively. For convenience, we
note xA = x and xB = 1−x, where 0 ≤ x ≤ 1. A simplified proof of that fact is given in
Appendix A and actually does not rely on an averaging approximation, like the CPA.

5.3 Mott-Hubbard transition at fractional filling in
the binary alloy disordered Hubbard model

The Mott-Hubbard metal-insulator transition occurs upon increasing the interaction strength U
in the simple Hubbard models (3) if the number of electrons Ne is commensurate with the
number of lattice sites NL or, more precisely, if the ratio Ne/NL is an odd integer. At zero
temperature it is a continuous transition whereas at finite temperatures the transition is of the
first order [13]. The transition happens by a dynamical redistribution of the spectral weight
such that two Hubbard subbands are formed and a central, quasiparticle peak in between, which
vanishes at the critical interaction U = Uc where the system becomes a Mott insulator.
Surprisingly, in the presence of binary alloy disorder the MIT occurs at fractional filling [22].
We describe this situation by using the Anderson-Hubbard model (3) with the distribution (33),
which corresponds to a binary-alloy system composed of two different atoms A and B. As
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Fig. 1: Left: Schematic plot representing the Mott-Hubbard metal-insulator transition in a
correlated electron system with binary alloy disorder. The shapes of DOS are shown for different
interactions U and disorder strengths ∆. Increasing ∆ at U=0 leads to splitting of the spectral
function into the lower (LAB) and the upper (UAB) alloy subbands, which contains 2xNL and
2(1−x)NL states, respectively. Increasing U at ∆ = 0 leads to the occurrence of lower (LHB)
and upper (UHB) Hubbard subbands. The Fermi energy for filling n = x is indicated by µ. At
n = x (or n = 1+x, not shown in the plot) the LAB (UAB) is half-filled. In this case an increase
in U and ∆ leads to the opening of a correlation gap at the Fermi level and the system becomes
a Mott insulator. Right: Two possible insulating states in the correlated electron system with
binary-alloy disorder. When U < ∆ the insulating state is an alloy Mott insulator with an
excitation gap in the spectrum of the order of U. When U > ∆ the insulating state is an alloy
charge transfer insulator with an excitation gap of the order of ∆; after Ref. [22].

discussed there is a binary alloy band splitting expected for large ∆. New possibilities appear
in systems with correlated electrons and binary alloy disorder [22]. The Mott-Hubbard metal-
insulator transition can occur at any filling n = Ne/NL = x or 1+x, corresponding to a half-
filled lower or to a half-filled upper alloy subband, respectively, as shown schematically for
n = x in Fig. 1.
The Mott insulator can then be approached either by increasing U when ∆ ≥ ∆c (alloy band
splitting limit), or by increasing ∆ when U ≥ Uc (Hubbard band splitting limit). The nature of
the Mott insulator in the binary alloy system can be understood physically as follows. Due to
the high energy cost of the order of U the randomly distributed ions with lower (higher) local
energies εi are singly occupied at n = x (n = 1+x), i.e., the double occupancy is suppressed.
In the Mott insulator with n = x the ions with higher local energies are empty and do not
contribute to the low-energy processes in the system. Likewise, in the Mott insulator with
n = 1+x the ions with lower local energies are double occupied implying that the lower alloy
subband is blocked and does not play any role.
For U > Uc(∆) in the Mott insulating state with binary alloy disorder one may use the lowest
excitation energies to distinguish two different types of insulators. Namely, for U < ∆ an
excitation must overcome the energy gap between the lower and the upper Hubbard subbands,
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Fig. 2: Ground state phase diagram of the Hubbard model with binary-alloy disorder at filling
n=x=0.5. The filled (open) dots represent the boundary between paramagnetic metallic (PM)
and paramagnetic insulating (PI) phases as determined by DMFT with the initial input given
by the metallic (insulating) hybridization function. The horizontal dotted line represents Uc
obtained analytically from an asymptotic theory in the limit ∆ → ∞. Inset: hysteresis in the
spectral functions at the Fermi level obtained from DMFT with an initial metallic (insulating)
host represented by filled (open) symbols and solid (dashed) lines; after Ref. [22].

as indicated in Fig. 1. We call this insulating state an alloy Mott insulator. On the other hand,
for ∆ < U an excitation must overcome the energy gap between the lower Hubbard subband
and the upper alloy-subband, as shown in Fig. 1. We call this insulating state an alloy charge
transfer insulator.
In Fig. 2 we present a particular phase diagram for the Anderson-Hubbard model at filling
n = 0.5 showing a Mott-Hubbard type of MIT with a typical hysteresis.

5.4 Ferromagnetism in the binary alloy disordered Hubbard model;
disorder-induced enhancement of the Curie temperature

Itinerant ferromagnetism in the pure Hubbard model occurs only away from half-filling and if
the DOS is asymmetric and peaked at the lower edge [23, 24]. While the Curie temperature
Tc increases with the strength of the electron interaction one would expect it to be lowered
by disorder. However, our investigations show that in some cases the Curie temperature can
actually be increased by binary alloy disorder [25, 26].
Indeed, the Curie temperature as a function of alloy concentration exhibits a very rich and
interesting behavior as is shown in Fig. 3. At some concentrations and certain values of U, ∆,
and n, the Curie temperature is enhanced above the corresponding value for the non-disordered
case (x=0 or 1). This is shown in the upper part of Fig. 3 for 0 < x < 0.2. The relative increase
in Tc can be as large as 25%, as is found for x ≈ 0.1 at n = 0.7, U = 2 and ∆ = 4.
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Fig. 3: Curie temperature as a function of alloy concentration x at U = 2 (upper part) and 6
(lower part) for n = 0.7 and disorder ∆ = 1 (dashed lines) and 4 (solid lines); after Refs. [25,
26]. Temperatures are in the energy units.

This unusual enhancement of Tc is caused by three distinct features of interacting electrons in
the presence of binary alloy disorder:
i) The Curie temperature in the non-disordered case T pc ≡ Tc(∆=0), depends non-monotonically
on band filling n [24]. Namely, T pc (n) has a maximum at some filling n = n∗(U), which in-
creases as U is increased; see also our schematic plots in Fig. 4.
ii) As described above, in the alloy-disordered system the band is split when ∆�max(|t|, U).
As a consequence, for n < 2x and T � ∆ electrons occupy only the lower alloy subband and
for n > 2x both the lower and upper alloy subbands are filled. In the former case the upper
subband is empty while in the latter case the lower subband is completely full. Effectively,
one can therefore describe this system by a Hubbard model mapped onto either the lower or
the upper alloy subband, respectively. The second subband plays a passive role. Hence, the
situation corresponds to a single band with the effective filling neff = n/x for n < 2x and
neff = (n−2x)/(1−x) for n > 2x. It is then possible to determine Tc from the phase diagram
of the Hubbard model without disorder.
iii) The disorder leads to a reduction of T pc (neff) by a factor α = x if the Fermi level is in the
lower alloy subband or α = 1−x if it is in the upper alloy subband, i.e., we find

Tc(n) ≈ αT pc (neff), (34)

when ∆ � max(|t|, U). Hence, as illustrated in Fig. 4, Tc can be determined by T pc (neff).
Surprisingly, then, it follows that for suitable U and n the Curie temperature of a disordered
system can be higher than that of the corresponding non-disordered system.



8.14 Krzysztof Byczuk

Fig. 4: Schematic plots explaining the filling dependence of Tc for interacting electrons with
strong binary alloy disorder. Curves represent T pc , the Curie temperature for the pure system,
as a function of filling n at two different interactions U1 � U2. Left: For n < x, Tc of the
disordered system can be obtained by transforming the open (for U1) and the filled (for U2)
point from n to neff = n/x, and then multiplying T pc (n/x) by x as indicated by arrows. One
finds Tc(n) < T pc (n) for U1, but Tc(n) > T pc (n) for U2. Right: For n > x, Tc of the disordered
system can be obtained by transforming T pc (n) from n to neff = (n−2x)/(1−x), and then
multiplying T pc [(n−2x)/(1−x)] by 1−x as indicated by arrows. One finds Tc(n) > T pc (n) for
U1, but Tc(n) < T pc (n) for U2; after Refs. [25, 26].

6 DMFT and TMT

6.1 Typical medium theory for Anderson localization

The Mott-Hubbard MIT is caused by the Coulomb correlations in the pure system. By contrast,
the Anderson MIT, also referred to as the Anderson localization, is due to coherent backscat-
tering from randomly distributed impurities in a system without interaction [5]. It is therefore
a challenge to investigate the effect of the simultaneously presence of interactions and disorder
on electronic systems [27, 28]. In particular, the question arises whether it will suppress or en-
large a metallic phase. And what about the Mott and Anderson insulating phases: will they be
separated by a metallic phase? Possible scenarios are schematically plotted in Fig. 5.
The Mott-Hubbard MIT is characterized by the opening of a gap in the density of states at the
Fermi level. At the Anderson localization transition the character of the spectrum at the Fermi
level changes from a continuous spectrum to a dense, pure point spectrum. It is plausible to
assume that both MITs can be characterized by a single quantity, namely, the local density of
states. Although the LDOS is not an order parameter associated with a symmetry breaking
phase transition, it discriminates between a metal and an insulator, which is driven by correla-
tions and disorder, cf. insets to Fig. 5.
In a disordered system the LDOS depends on a particular realization of the disorder in the sys-
tem. To obtain a full understanding of the effects of disorder it would therefore in principle be
necessary to determine the entire probability distribution function of the LDOS, which is almost
never possible. Instead one might try to calculate moments of the LDOS. This, however, is in-
sufficient because the arithmetically averaged LDOS (first moment) stays finite at the Anderson
MIT [29]. It was already pointed out by Anderson [5] that the typical values of random quanti-
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Fig. 5: Possible phases and phase transitions triggered by interaction and disorder in the same
system. According to DMFT investigations the simultaneous presence of correlations and dis-
order enhances the metallic regime (thick line); the two insulating phases are connected con-
tinuously. Insets show the local density of states when disorder or interaction is switched off.

ties, which are mathematically given by the most probable values of the probability distribution
functions, should be used to describe localization. The geometrical mean gives an approxima-
tion of the most probable (typical) value of the LDOS and vanishes at a critical strength of the
disorder, hence providing an explicit criterion for the Anderson localization [5, 30, 31].
In the following we will use the simple box probability distribution function of the on-site
random energies εi, i.e.

p(εi) =

{
1
∆

for |εi| ≤ ∆

0 otherwise.
(35)

Other types of the continuous probability distribution functions would lead to the same generic
results although detailed numbers might be different. The reason is that this probability distri-
bution does not yield any alloy band splitting.

6.2 Anderson localization in disordered Hubbard and Falicov-Kimball
models

A non-perturbative framework for investigations of the Mott-Hubbard MIT in lattice electrons
with a local interaction and disorder is provided by the DMFT [13]. If in this approach the
effect of local disorder is taken into account through the arithmetic mean of the LDOS [32, 33]
one obtains, in the absence of interactions, the well-known coherent potential approximation
(CPA) [36], which does not describe the physics of Anderson localization. To overcome this
deficiency Dobrosavljević et al. [31] incorporated the geometrically averaged LDOS into the
self-consistency cycle and thereby derived a mean-field theory of Anderson localization which
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Fig. 6: Non-magnetic ground state phase diagram of the Anderson-Hubbard model at half-
filling as calculated by DMFT with the typical local density of states; after Refs. [27].

reproduces many of the expected features of the disorder-driven MIT for non-interacting elec-
trons. This scheme uses only one-particle quantities and is therefore easily incorporated into
the DMFT for disordered electrons in the presence of phonons [34], or Coulomb correla-
tions [27, 28]. In particular, the DMFT with geometrical averaging allows to compute phase
diagrams for the Anderson-Hubbard model (3) and the Anderson-Falicov-Kimball model (4)
with the continuous probability distribution function at half-filling [27, 28]. In this way we
found that, although in both models the metallic phase is enhanced for small and intermediate
values of the interaction and disorder, metallicity is finally destroyed. Surprisingly, the Mott
and Anderson insulators are found to be continuously connected. Phase diagrams for the non-
magnetic ground state are shown in Fig. 6 for the Anderson-Hubbard model and in Fig. 7 for
the Anderson-Falicov-Kimball model.

7 Outlook

In these lecture notes we have seen that a combination between the correlations of interacting
electrons and disorder leads to novel and unexpected possibilities. And the combination of
the DMFT with statistical methods to treat randomness has turned out to be very successful
in describing the correlated electrons with disordered potentials. Continuation of this research
turns in many directions.
The influence of non-uniform or random external potentials on the existence and stability of the
antiferromagnetic phases in the Hubbard model was investigated in Ref. [21, 35]. The study of
the Anderson transition in the presence of binary-alloy disorder was performed in [36]. The
same type of disorder was used to study ferromagnetism in the periodic Anderson model in
[37]. A spin-selective disorder and the localization MITs were investigated in [38, 39]. More
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Fig. 7: Non-magnetic ground state phase diagram of the Anderson-Falicov-Kimball model at
half-filling as calculated by DMFT with the typical local density of states; after Refs. [28].

recently, the typical medium theory was extended to treat systems with off-diagonal, hopping
disorder [40].
In conclusion, the dynamical mean-field theory for correlated electrons with disorder is a well
established method to comprehensively describe interacting electrons on crystal lattices or even
fermionic atoms on optical lattices.
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A Proof of the alloy band splitting theorem

In order to prove the alloy band splitting theorem we need to show firstly the so called lo-
calization theorem. For that we assume that the unperturbed Hamiltonian Ĥ0 has a point like
spectrum, i.e.

Ĥ0 =
∑
i

εi|i〉〈i|, (36)

where εi are real discrete eigenvalues of the Hamiltonian Ĥ0 in the {|i〉} base. Any normalized
vector can be expanded in this basis

|α〉 =
∑
i

ci|i〉, (37)

with ‖α‖2 ≡ |〈α|α〉|2 =
∑

i |ci|2 = 1. Now we add a perturbation T̂ to our Hamiltonian

Ĥ = Ĥ0 + T̂ , (38)

such that the perturbation part T̂ is bounded, i.e., for any normalized vector |α〉 we have that

‖T̂‖ ≡ 〈α|T̂ |α〉 <∞. (39)

We also define a distance of the complex number λ from the spectrum of Ĥ0 Hamiltonian as

d(λ) = inf
{
|λ−εi|

}
. (40)

We can easily show that d(E) ≤ ‖T̂‖ where Ĥ|α〉 = E|α〉, i.e., the distance between the
spectra points of the full Hamiltonian Ĥ and the unperturbed Hamiltonian Ĥ0 is bounded: In-
deed, from (E−Ĥ0)|α〉 = T̂ |α〉 we get that 〈α|(E − Ĥ0)

2|α〉 = 〈α|T̂ 2|α〉 or, equivalently,∑
i |ci|2(E−εi)2 = ‖T̂‖2. Estimating the left hand side by

∑
i |ci|2(E−εi)2 ≥ d(E)2

∑
i |ci|2 =

d(E)2 we obtain the inequality d(E) ≤ ‖T̂‖. This results is known as a localization theorem.
In particular, it follows that the spectrum of Ĥ is covered by the union of spectra sets

A =
⋃
i

〈
εi−‖T̂‖, εi+‖T̂‖

〉
. (41)

If the perturbation Hamiltonian T̂ =
∑

ij tij â
†
i âj is a tight-binding Hamiltonian on a uniform

lattice, diagonalized by the Fourier transform to the form T̂ =
∑

kEk â
†
kâk, with the dispersion

Ek, the spectrum of T̂ is bounded between tmin = min(Ek) and tmax = max(Ek). Therefore,
we get the estimate for the spectrum of Ĥ

A =
⋃
i

〈
εi−tmin, εi+tmax

〉
. (42)

As a consequence, for a binary alloy systems (i = A or B)

A =
〈
εA−tmin, εA+tmax

〉
∪
〈
εB−tmin, εB+tmax

〉
, (43)

or in our binary alloy model

A =
〈
−∆

2
−tmin,−

∆

2
+tmax

〉
∪
〈∆
2
−tmin,

∆

2
+tmax

〉
. (44)

If |tmax−tmin| < ∆ the band is split and two separated alloy subbands are formed [4].
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[20] J.W. Negele and H. Orland, Quantum many-particle systems, (Perseus, 1988)

[21] M. Snoek, I. Titvinidze, C. Toke, K. Byczuk, and W. Hofstetter,
New J. Phys. 10, 093008 (2008)

[22] K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. B 69, 045112 (2004)

[23] M. Ulmke, Eur. Phys. J. B 1, 301 (1998)
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