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1 Introduction

Iron-based superconductors (Fe-SC) are one of the many “quantum materials”1 that are keeping
the international research community busy in the recent years. In order to understand, and
possibly boost, their superconductivity, a necessary step is understanding their normal metallic
phase that turns superconductive below the critical temperature.
This has been characterized as a Hund’s metal [1], and this paradigm now applies successfully
to many other materials [2].
The name comes from the correlations in the electronic states that are due to the tendency
of electrons to distribute themselves on different orbital states with their spins aligned. This
energetic convenience, in isolated atoms, is known as a set of rules, the famous “Hund’s rules”.
The fact that these rules have an impact on gases and insulating solids is well known. That they
can have strong influence on metallic phases is a much more recent realization [3].
Band theory is the basic approach to crystalline solids, and within it electronic properties of
solids are calculated using independent electrons. That is, the electron-electron repulsion is
taken into account effectively (differently depending on the specific technique that is used:
i.e. Hartree-Fock, any flavor of Density-Functional Theory-DFT, etc.) as an external potential
acting on single particles, and the wavefunctions of the eigenstates are Slater determinants of
Bloch single-particle eigenfunctions. Each Bloch wavefunction is a plane wave modulating a
periodic function which, in some materials, can be quite localized around the lattice sites for the
conduction bands. For these materials often band theory is particularly bad in predicting many
electronic properties, this being an indication that the independent particle approximation of
the wavefunctions is not good enough, and one has to use a more refined scheme. By definition
electrons in these materials are called correlated.
The local part of the Bloch wavefunction can be expanded on a local basis, a customary choice
being that of (orthonormal) maximally-localized Wannier functions [4] with given s/p/d or f
orbital symmetries. In the Slater determinant the weight of the different local configurations
(i.e. the coefficient in front of each possible product of local basis functions in the sum) will
be dictated by the weights of these orbitals in the Bloch functions. No preference can arise
in the wavefunction for specific collective configurations of the electrons on a given site, i.e.,
high or low total spin, charge or orbital state: these correlations are absent in band theory.
Methods that introduce these correlations are needed for modeling these materials correctly,
among which indeed are the Fe-SC, as is illustrated in Fig. 1. The plot shows in blue the
experimentally measured Sommerfeld coefficient (the slope of the electronic specific heat as
a function of temperature at low temperatures) across a range of Fe-SC, each square being a
different single-crystal sample. This quantity can be calculated within band theory (DFT) and
the results are plotted in black. The discrepancy between theory and experiments is apparent,
all the more moving towards the left side of the diagram, indicating an increasing impact of

1Quantum materials is an “umbrella term” encompassing materials showing interesting non-trivial quantum
properties, among which unconventional superconductivity has certainly a prominent spot.
https://en.wikipedia.org/wiki/Quantum_materials

https://en.wikipedia.org/wiki/Quantum_materials
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Fig. 1: Sommerfeld coefficient, i.e., the coefficient γ of the low-T electronic specific heat
(CV ∼ γT + · · · ) of the normal metallic phases in the “122” family of Fe-based supercon-
ductors. Its mother compound, BaFe2As2 can be electron doped with the substitution of Co for
Fe, and hole-doped replacing Ba with K, yielding the level of doping reported on the x-axis.
The hole-doped end members AFe2As2 (A=K, Rb, Cs) are isovalent. Experimental values are
reported in blue, while DFT-GGA results are in black, the discrepancy highlighting the strongly
correlated nature of these materials. DFT+Slave-spin mean-field (in green) calculations per-
formed with a single choice of the interaction values (U = 2.7 eV, J/U = 0.25) are able to
reproduce the whole trend by including dynamical local correlations. Switching off only the
Hund’s coupling J (brown) makes the results fall back towards the uncorrelated ones, no mat-
ter how large (even unphysically large—dark yellow) the value of the Coulomb interaction U is
chosen, demonstrating the predominant role of Hund’s coupling in these materials.

the neglected correlations. The results of an approach including them (DFT+Slave-Spin mean-
field, reported in green) captures the whole series of experiments instead, proving the point.
Neglecting specifically the aforementioned Hund’s rules in the approach, even when including
the more familiar charge correlations (i.e. the tendency of electrons to avoid packing on the
same site, reported in yellow and brown as “J=0”) results in a spectacular fall back close to the
band-theory results, demonstrating that Hund’s physics is the key player here.
In this chapter we will try to break down this calculation to inspect its gears and to gain—also
through some simplified models—insight into why and when Hund’s physics is important and
a material can be rightfully seen as a Hund’s metal.2

2I gave previously a lecture at the Jülich school of 2017 entitled “Hund’s metals, explained”. Both lectures’
subject is Hund’s metal physics and they both address its importance in the Fe-SC. I have tried, however, to
maintain the information overlap between the two lectures to a minimum, making them maximally complementary.
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previously reported neutron diffraction data, which show
unambiguously that they are coincident and first order for all x
before they are both suppressed at x ! 0.3.6 Unusually, the two
order parameters, magnetic and structural, are proportional to
each other, apparently indicating biquadratic coupling that is
usually only observed at a tetracritical point,26,27 not over an
extended range of compositions. Possible explanations for this
observation are discussed in this paper’s conclusions.

Superconductivity emerges before the complete suppres-
sion of the antiferromagnetic/orthorhombic (AF/O) phase and
coexists at low-doping levels. The nature of the competition be-
tween AF/O order and superconductivity is a central question
in understanding iron-based superconductivity.28,29 Earlier
reports based on local probes found that in Ba1−xKxFe2As2,
the coexistence region is characterized by a mesoscopic
phase separation into AF/O and superconducting droplets.30,31

However, our previously reported diffraction data are only
consistent with a microscopic phase coexistence,6 a conclusion
since supported by muon spin rotation (µSR) experiments,32

suggesting that the earlier reports may be due to compositional
fluctuations within the samples.

One of the main reasons for studying Ba1−xKxFe2As2 is
that superconductivity extends to much higher hole-doping
levels, with 0.5 holes per Fe atom, than in the electron-doped
superconductors produced by transition metal substitutions.
In the case of BaFe2−xCoxAs2, superconductivity vanishes at
only 0.12 electrons per Fe atom.10 Furthermore, the maximum
Tc with hole doping is 38 K, significantly higher than the
maximum Tc of ∼25 K obtained with electron doping. This
electron–hole asymmetry in the phase diagram has been
attributed to enhanced Fermi surface nesting in the hole-doped
compounds, consistent with angle-resolved photoemission
spectroscopy (ARPES) data and band structure calculations.33

This explanation is also supported by the evolution of resonant
spin excitations, which become incommensurate due to the
mismatch in hole and electron Fermi surface volumes when
Tc starts to fall.34 On the other hand, there is also a strong
correlation between Tc and internal structural parameters such
as the Fe-As-Fe bond angles.35,36 These are known to influence
the band structure and the degree of moment localization, but
their role in optimizing superconductivity and the implications
for the gap symmetry is a matter of debate.37,38

There have been two previous reports of the doping depen-
dence of this series in addition to our own brief report, which
are all in qualitative agreement.6,36,39 At room temperature, all
members of the Ba1−xKxFe2As2 series crystallize in a tetrag-
onal structure with the space group symmetry of I4/mmm
(Fig. 1). Low-doped samples also exhibit a low-temperature
phase transition to an orthorhombic structure with space group
Fmmm.5 Superconducting samples at higher doping have a
maximum Tc of 38 K and remain tetragonal at all measured
temperatures down to 1.7 K. However, there are significant
discrepancies in the published reports concerning the critical
dopant concentrations defining the onset of superconductivity
and the suppression of the AF/O phase, with the latter varying
from x = ∼0.336 to x = ∼0.4.39 As already mentioned,
there have also been disagreements about the nature of the
competition among the three ordered phases at low doping. We
believe that these discrepancies are due to uncertainties in the
actual composition of the synthesized samples, since it is well

FIG. 1. (Color online) Structure of BaFe2As2, which crystallizes
in a tetragonal ThCr2Si2-type structure with the space group symme-
try of I4/mmm. Potassium substitutes onto the barium sites.

known that potassium is particularly volatile. Controlling the
inhomogeneity to within acceptable limits in order to improve
the accuracy of the various phase boundaries has been a key
goal of this work, and we estimate that we have been able to
make samples in which !x < 0.01. We performed neutron and
x-ray diffraction studies of the magnetic and structural order
using high-resolution powder diffractometers (HRPDs) so that
the systematic variation of the lattice parameters and internal
structural parameters can be used to estimate the degree of
uncertainty in the average composition and its variation within
the samples.

In this article, we present the results of Rietveld refinements
for the entire series and use this analysis, along with bulk
measurements, to produce a comprehensive magnetic and
structural phase diagram that provides insight into the nature
of the phase competition that underlies iron-based supercon-
ductivity. Our results show that there is a steeper decrease
in Tc and hence a narrower region of phase coexistence
of the AF/O order with superconductivity than previously
reported. After a description of our experimental results, we
combine our findings with results reported in the literature
on the electron-doped Ba(Fe1−xCox)2As2 series in order to
elucidate the origin of the electron–hole asymmetry in the
phase diagram.

II. EXPERIMENTAL DETAILS

The synthesis of homogeneous, single-phase
Ba1−xKxFe2As2 samples is known to be particularly
delicate due to unfavorable kinetics, high vapor pressures, and
a significant difference in the chemical reactivity of K and Ba
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low temperatures before a crossover to a di↵erent Curie-Weiss-like regime. Both

quantities also show a crossover at ⇠ 50 K which can be seen as the typical coher-

ence temperature of heavy fermions. This crossover has been already described in

IBSC [19] and corresponds to a loss of coherence of the quasiparticles in the system.

This type of phenomenon can be explained due to the coexistence of heavy and

light quasiparticles in IBSC, in a similar fashion as in usual heavy fermions there

are light and heavy electrons coming from s and f orbitals respectively. This orbital

selectivity appears as a consequence of Hund’s coupling [115]. Another characteristic

feature of heavy fermions is the presence of sharp spectroscopic features close to

the Fermi level that can be ascribed to the presence of these heavy quasiparticles.

In particular in the 122 family di↵erent Van Hove singularities (VHS) have been

detected [137, 138, 139].

4.2 Realistic simulations of 122 stoichiometric IBSC

Table 4.1: Di↵erent experimental lattice parameters and relevant atomic positions of the 122
family of IBSC corresponding to the tetragonal high temperature phase. Provided in private
communications by F. Hardy in Karlsruhe, Germany.

Compound a = b(Å) c(Å) zAs

BaFe2As2 3.9625 13.0168 0.3545
KFe2As2 3.844 13.916 0.35249
RbFe2As2 3.873 14.459 0.34748
CsFe2As2 3.905 15.126 0.34189

The spectrum of electronic excitations is calculated within a DFT+SSMFT

framework as explained in Section 2.5. The DFT calculations have been performed

with the software package Wien2k [105] using the exchange correlation functional

of PBE-GGA [140], although some comparisons have been done using the local den-

sity approximation (LDA). This particular discussion can be found in Appendix F.

The lattice parameters of these compounds are compiled in Table 4.1 and they cor-

respond to the high temperature tetragonal phase, in which a Fermi liquid behavior

is observed [19, 141].

We parametrize the DFT band structure with a set of maximally-localized Wan-

nier functions [77] including only conduction bands of mainly Fe-3d character. The

many-body interactions are included with a multi-orbital Hubbard-Kanamori Hamil-

tonian in the form of eq. (2.89). Although several scans in U are performed,

for KFe2As2 and RbFe2As2 we choose U = 2.7 eV, whereas for CsFe2As2 we set

U = 2.8 eV1. For the Hund’s coupling we fix J/U = 0.25. This value slightly di↵ers

from that obtained in cRPA-calculations [107] and that is typically used in DMFT

1The larger ionic radius of the Cs1+ cation compared to Rb1+ and K1+ will be reflected in
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Fig. 2: Structure of the AFe2As2 compounds (here A=Ba), and structural parameters deter-
mined by X-ray diffraction. (F. Hardy, private communication)

2 Essentials about Fe-based superconductors

Here an essential outline of Fe-SC will be given, without any attempt of neither a historical
account nor a review of the literature (for which two nice starting points are Refs. [5, 6]).

• Fe-SC are materials including planes of Fe atoms forming a square lattice with ligands
in the middle of the squares, alternatively slightly above and below the level of the plane.
The ligands can be Pnictogens (As, P) or Chalcogens (S, Se, Te), giving rise to the two
groups of Iron Pnictides and Iron Chalcogenides, respectively. Several different families
exist in these two groups depending on the spacer layers between these planes. Most of
the action happens in the Fe-ligand plane, which motivates the common physics of these
materials despite their chemical variations. We will focus on the “122” family, taking the
name from the stoichiometric formula AFe2As2 (where A can be Ba, K, Rb, Cs),3 where
the spacer layer hosts only the cation A (see Fig. 2). Their symmetry is tetragonal (i.e.,
the conventional unit cell has equal dimensions a=b in the x and y directions, but not in
the z direction), with orthorhombic distortions (i.e. a 6=b) happening at low temperatures
in some cases.

• The striking feature that makes this family extremely interesting is that it can be chem-
ically tuned in a very fine way. Isovalent substitutions (P for As) can be used to apply
chemical pressure, while others can be used to tune the electronic density. Using formal
oxidation states Ba2+ and As3− gives to Iron the valence Fe2+, which since the Fe has
the ground state configuration [Ar]3d64s2 means that it will host 6 electrons in the 3d-
orbitals on average. Substituting Fe with Co (but also with Ni) introduces extra electrons,
whereas the substitution of Ba with K introduces extra holes, and all the compositions
between the stoichiometric BaFe2As2 and KFe2As2 can be obtained, thus providing the
very fine phase diagram reported in Fig. 3. Given that the formal oxidation state for the
alkaline elements is K1+, the average number of electron hosted on Fe diminishes to 5.5.
As said the end member KFe2As2 has isovalent siblings with K replaced by Rb or Cs.

3And also Na, Ca and Sr which we will not address here.
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stars represents density functional theory + slave spin (DFT+SS) calculations for the tetragonal paramagnetic phase. The magenta area indicate
the loss of density of states due to the reconstruction of the Fermi surface in the SDW phase. Lines are guide to the eyes.

for compositions close to the optimal concentration (x = 0.35
and Tc = 38.4 K), which complicates the thermodynamic
analysis of the electronic properties of these compounds.

Hereafter, we describe a reliable method to subtract the phonon
background based on a modified version of the empirical
Neumann-Kopp rule [61].

205113-5

Fig. 3: Phase diagram of electron and hole-doped BaFe2As2 (where Fe is formally in the 3d6

configuration at stoichiometry), and of the end-members of the family (yellow area, with Fe in
the formal 3d5.5 configuration) AFe2As2 (A=K,Rb,Cs). The white/yellow zone of the phase dia-
gram is paramagnetic and metallic, AF indicates a collinear metallic antiferromagnetic phase,
SC indicates superconductivity. Other colors indicate coexistent phases. (adapted from [7])

• In the phase diagram three main phases are present: a metallic “normal” phase for all
compounds at high temperatures, turning into an antiferromagnetic metal (with reduced
orthorhombic symmetry) or into a superconductor, depending on the composition, be-
low the respective critical temperatures. The metallic phases are standard Fermi liquids,
showing, e.g., a T 2 dependence of the resistivity, saturating Pauli magnetic susceptibility
and T -linear specific heat (of which the slope is reported in Fig. 1) at low temperature.
The maximal critical temperature for superconductivity varies across the families, it tops
at ∼ 40 K for the 122 family, while the record for a bulk Fe-SC is ∼ 56 K for the “1111”
family. Monolayer FeSe on a SrTiO3 substrate was reported having Tc > 65 K.

3 Modeling Fe-based superconductors

Ab-initio modeling of Fe-SC can be straightforwardly performed within DFT, using the experi-
mental structural parameters determined by X-ray diffraction (reported in Fig. 2). For AFe2As2
the Bravais lattice is body-centered, space group I4/mmm in the tetragonal phases (turning to
Fmmm in the orthorhombic phases). The bandstructures obtained with the PBE-GGA func-
tional are reported in Fig. 4 (green curves in the right panels). The plots focus on a range of
a few eV around the Fermi level, on the conduction bands which are responsible of the elec-
tronic properties of these materials and which, as it is visible on the left panels, have mostly a
character of Fe 3d-orbitals.
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(J/U = 0.12 ÷ 0.15) together with the full Kanamori form of the Hubbard model.

In SSMFT, the same results are obtained using only the Ising-like (density-density)

terms when the Hund’s coupling is set to J/U = 0.2 ÷ 0.25 [66] respectively.
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Figure 4.2: Left column: densities of states of the 122 family of IBSC. The shaded grey region
corresponds to the total DOS of the system, the red one to the Fe DOS per atom, the green line
to the DOS of the As ligands, and the black line to the total DOS of the Wannier orbitals. Right
column: electronic band structure of these compounds. The green lines correspond to the DFT
calculations and the red points show the dispersion relation of the tight-binding models done with
Wannier90.

a smaller value of the hopping integrals between di↵erent lattice sites (and thus in a smaller
average kinetic energy). To compensate this di↵erence we choose a slightly larger value of the local
Coulomb interaction U for this compound. These values of U also correctly reproduce the value
of the Sommerfeld coe�cient for these compounds at the stoichiometry of n = 5.5.

74

Fig. 4: Electronic structure and maximally-localized Wannier function fitting of the conduc-
tion bands for the main stoichiometric compounds of the 122 family. Right panels: the DFT
bandstructure—zoomed in to an energy range of a few eV around the Fermi level—is reported
in green on a path in the Brillouin zone of the tetragonal BCC lattice. The fit of these bands with
5 Wannier d-orbitals centered on each Fe atom is drawn in red. Left panels: the total DFT DOS
in this energy range is reported in grey. The contribution of each of the two Fe atoms is in red,
while that of the As ligands is in green. The black line is the DOS of the tight-binding Wannier
model. The dark and light blue lines define the outer and the inner (“frozen”) windows for
the Wannier90 procedure for obtaining MLWF and the tight-binding model for each compound.
(courtesy of Pablo Villar Arribi [8])
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Three main comments are in order, on the DFT bandstructures:

1. Most of the bands have little dispersion in the z-direction (Γ–Z path in these figures),
owing to the relatively bi-dimensional nature of these materials. Thus, the resulting Fermi
surfaces will have little evolution along z and can be well characterized by looking at their
cuts in the kz=0 plane (path Γ–X–M–Γ ). Importantly, the bands in BaFe2As2 cross the
Fermi level around the center of the Brillouin zone Γ and near its corner M, creating
there hole pockets and electron pockets, respectively. This semi-metallic nature of the
mother compounds is shared among all the families of Fe-SC, and is observed in ARPES
experiments. The various pockets are similar in size and shape and this creates quasi-
nesting conditions boosting the magnetic susceptibility, which explains the arising of the
magnetic phases and provides a natural mechanism for unconventional superconductivity
mediated by spin fluctuations [5].

Since the substitution of Ba with alkalines diminishes the electrons in the system the
Fermi level moves down in these compounds, making the hole-pockets larger, while the
electron pockets essentially empty out and leave little features in the Fermi surface around
the M point.

2. Despite the Fermi surfaces matching qualitatively the experiments, the measured disper-
sion of the conduction bands is much smaller than the calculated bandstructure by at least
a factor of 2 to 3. This is a typical sign that dynamical correlations are important, since the
dressed quasiparticles replacing the bare electronic excitations of independent electrons
have a larger mass and smaller velocity, thus mainly “squeezing” the dispersions around
the Fermi level. Moreover it is seen that bands where the Fe t2g (and in particular the dxy)
orbital character is dominant are substantially more strongly renormalized than the oth-
ers, indicating the selective strength of the correlations among the different electrons.4

This band-theory/experiment mismatch is smaller for the electron-doped compounds but
larger the more hole doping is introduced. It is strikingly illustrated in the value of the
Sommerfeld coefficient γ discussed in the introduction and shown in Fig. 1. Indeed,
γ = π2k2B/3N

∗(EF ) is proportional to the density of states (DOS) of the quasiparticles
at the Fermi level N∗(EF ), which increases with the aforementioned mass increase due
to dynamical correlations. In cases of selective correlations the most correlated electrons
can make the DOS very large even in the presence of other much less correlated electrons.
For a doping of 0.5 holes/Fe (i.e., for KFe2As2 and its isovalent siblings) correlations are
very strong and very selective.

3. Taking into account local dynamical correlations, as we will see in the following, does
not cure all quantitative discrepancies between theory and experiments [1], however. In-
deed the Fermi pockets have typically a larger size in calculation than in experiments,
and in some cases a pocket is present in the DFT result whereas the band responsible

4Both the experimental and the theoretical aspects of the orbital selectivity of Fe-SC’s correlation strength were
discussed in depth in the lecture of 2017.
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for it is seen in ARPES data away from EF . This mismatch can obviously alter the es-
timate of many low-energy electronic properties (for example the value of N∗(EF ), the
nesting properties, etc.). In semi-metals as the Fe-SC this is a typical outcome of the
self-interaction, a known issue of LDA or GGA flavors of DFT, absent in Hartree-Fock.
As a matter of fact improving the treatment of the exchange energy beyond standard DFT
can cure it and improve the calculation of the Fermi surface and of the related properties
(see Ref. [9] and references therein).

In order to include dynamical correlations in the modeling, the electron-electron interaction has
to be treated beyond the mean-field level. The (screened) Coulomb interaction decaying quickly
with the distance, it is customary to expand it on a basis of localized functions, which is also
very efficient in describing the one-body part of the Hamiltonian, since as we mentioned pre-
viously the electronic density associated to the conduction bands is quite concentrated around
the lattice ions. One such orthonormal basis is that of the maximally-localized Wannier func-
tions (MLWF) that can be optimized so to best parametrize eigenstates and eigenfunctions in
the conduction bands of the DFT solution [4]. Their character is mainly Fe-3d as we said, with
some contribution from the 4p-electrons of the ligands. A natural choice is then to use a set of
5 basis functions of d-like symmetry on each Fe ion, and 3 basis functions of p-like symmetry
on each ligand ion, a total of 16 functions per unit cell. This p-d model is more accurate but of
greater complexity than the customary d-model, i.e., the alternative choice of introducing only
5 basis functions of d-like symmetry on each Fe ion. These functions cannot be as localized as
in the p-d model, but reduce the number of interaction parameters in the model.
Once chosen5 the basis of Wannier functions wm(r−Ri) the Hamiltonian of the conduction
electrons reads

H =
∑

ijmm′σ

tmm
′

ij d†imσdjm′σ +
1

2

∑
ijkl

∑
mm′nn′

∑
σσ′

V mm′nn′

ijkl d†imσd
†
jm′σ′dkn′σ′dlnσ (1)

where d†imσ is the creation operator of an electron with spin σ in the state whose wavefunction
is wm(r−Ri), and

tmm
′

ij =

∫
drw∗m(r−Ri)

(
− ~2

2me

∇2 + Veff(r)

)
wm′(r−Rj) (2)

and

V mm′nn′

ijkl =

∫
drdr′w∗m(r−Ri)w

∗
m′(r′−Rj)W (r, r′, ω=0)wn(r′−Rk)wn′(r−Rl) (3)

where Veff(r) is the effective one-body potential used in the band-theory calculation (e.g. the
Kohn-Sham potential in DFT) and W (r, r′, ω=0) is the low-frequency limit of the Coulomb

5A technical point is worth stressing for obtaining an optimal basis of MLWF, using, e.g., the publicly available
code Wannier90: Two windows of energy need to be defined in order to have a faithful representation of the
conduction bands and localized basis functions. An outer window encompasses all the bands to be fitted, whereas
an inner (“frozen”) window enforces the part to be reproduced exactly [4]. In Fig. 4 well-working choices for these
windows are indicated by dark and light blue lines respectively for each of the compounds, both in the left and in
the right panels. These were used in defining the models we utilize in the following.
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interaction e2/|r−r′| screened by all the excitation processes to and within the bands that are
not included in this low-energy model. It can be calculated in different frameworks, a customary
choice being constrained-RPA approximation (c-RPA). For most Fe-SC, c-RPA calculations
were reported in Ref. [10].

Owing to the localized nature of the Wannier functions and to the rapid decay of the screened
interaction with distance, a common simplifying choice is to retain only the local terms of the
interaction, i.e., V mm′nn′ ≡ V mm′nn′

ijkl δijδjkδkl. This gives rise to a multi-orbital Hubbard model.

Among the matrix elements of the local interaction a typical choice (exact in some limits, e.g., in
the presence of a large cubic field splitting that allows one to treat the three t2g orbitals separately
from the two eg orbitals [3]) is to retain only the terms containing the integrals Umn ≡ V mmnn,
and Jmn ≡ V mnmn (with n 6= m) and, defining U as the average of the Umm and J the average
of the Jmn for n 6= m over the orbitals, to finally write down the Kanamori interaction6

Hint = U
∑
im

ñim↑ñim↓ + (U−2J)
∑
im6=m′

ñim↑ñim′↓ + (U−3J)
∑

im<m′,σ

ñimσñim′σ

− J
∑
im 6=m′

d†im↑dim↓ d
†
im′↓dim′↑ + J

∑
im6=m′

d†im↑d
†
im↓ dim′↓dim′↑, (4)

where nimσ ≡ d†imσdimσ is the number operator and ñimσ ≡ nimσ−1
2

its particle-hole symmetric
version.7 J being the parameter favoring the spin alignment and the distribution of electrons on
different orbitals, is called the “Hund’s coupling”.

Solving and exploring this Hubbard-Kanamori model for the Fe-SC is still a formidable task.
However it can be done in several frameworks. Indeed several approaches and levels of per-
turbation theory in the interaction are the methods of choice, able to explore instabilities of
the DFT bandstructures towards the various broken symmetry phases found in the phase di-
agrams of these materials. The strength of the correlations, however, as we have previously
highlighted, casts some doubts on the quantitative (and in several important cases qualitative)
validity of such approaches. Also, typically calculated values of U range from 2.5 to 4.2 eV (J
is typically smaller, i.e., J/U = 0.12 . . . 0.15) which is of the order of the DFT bandwidth (see,
e.g., Fig. 4). We here expose the results of non-perturbative methods, thus not assuming a small
interaction as a starting point in any way.

One such methods is Dynamical Mean-Field Theory (DMFT), presented in this book in the
chapter by Eva Pavarini. Here we will rather expose the Slave-spin mean-field (SSMF) method,
which can be seen as a simpler dynamical mean-field technique providing orbital-selective band
renormalization and giving direct analytical access on the mechanisms behind it.

6Here it is seen that the off-diagonal elements of Umn are not used. Indeed it is found that they are typically
close to U−2J (an exact relation in some cases) which is then taken as a further simplifying assumption.

7This form of the interaction implies a shift of the chemical potential, of no physical meaning. A shift of the
chemical potential is implied anyway because of the double counting of the interaction already included in Veff(r),
which is not an issue in the d-model formulation for this reason.
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4 Slave-spin mean-field

In the slave-spin representation, the original fermionic model is mapped on an auxiliary model
having both fermions and spin variables on a lattice. That is, to every local electronic one-
particle state (created by d†imσ) are associated in the auxiliary, larger Hilbert space, both a
fermionic state (created by f †imσ) and a spin-1/2 variable, of z-component Szimσ (and flipped
by S±imσ). They both carry the same indices of the original d fermion, and the slave-spin has no
special relation—and should not be confused—with the physical spin. An occupied local state
|1〉d in the original space is then associated, in the auxiliary Hilbert space, to the direct product
of the occupied state for the corresponding f fermion and to the “up” (that we indicate with 1)
state of the associated “slave”-spin |1〉f |1〉s. Likewise an empty d-state |0〉d is associated to the
empty fermionic state and the “down” (that we indicate with 0) state of the slave spin |0〉f |0〉s.
These “physical” states satisfy the operatorial relation

f †imσfimσ = Szimσ +
1

2
, (5)

which can be used to distinguish them from the remaining combinations |1〉f |0〉s and |0〉f |1〉s
which have no physical counterpart.
This is apparently a complication, but it turns out that approximations performed on the larger
space can be less severe than if applied directly to the original system.
The operators of the original space are mapped on operators having the same matrix elements
between the physical states of the larger space, while their action on the unphysical states can be
chosen freely, in principle. In practice this freedom is used to gauge approximated treatments,
e.g., to reproduce known limits and possibly yield the most physical results.
Hence the number operator nimσ = d†imσdimσ can be equivalently mapped into the number
operator for the pseudo-fermions nfimσ = f †imσfimσ or into Szimσ + 1

2
, which, because of Eq. (5),

gives the same result by construction on the physical states. The interaction Hamiltonian Eq. (4)
then, for which we customarily consider only the density-density terms,8 can be written in terms
of the Sz operators only

Hs
int =

∑
i

Hs
int[i] = U

∑
im

Szim↑S
z
im↓+ (U−2J)

∑
im 6=m′

Szim↑S
z
im′↓+ (U−3J)

∑
im<m′σ

SzimσS
z
im′σ. (6)

The one-body part instead involves both slave-spins and pseudofermions, since the off-diagonal
destruction (creation) operator d(†)imσ is expressed by f (†)

imσO
(†)
imσ. The general form of the Oimσ

operator isOimσ = S−imσ+cimσS
+
imσ, where cimσ is an arbitrary gauge embodying the aforemen-

tioned freedom. We choose cimσ = 1√
〈n̂fimσ〉f (1−〈n̂

f
imσ〉f )

−1, which, within the present mean-field

approximation, can be shown to reproduce the non-interacting limit. Then the total Hamiltonian
of our model in the auxiliary Hilbert space reads H = H0 +Hs

int with

H0 =
∑

i 6=jmm′σ

tmm
′

ij f †imσfjm′σO
†
imσOjm′σ +

∑
imσ

εmf
†
imσfimσ, (7)

8Using the full Kanamori form, thus including the spin-flip and pair-hopping terms that we here neglect, does
not alter qualitatively any of the analysis or conclusions exposed in this chapter. The differences are merely
quantitative ones.
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where we have singled out the local terms in the one-body part of Eq. (1) as tmm′
ii = εmδmm′ .

The mapping is thus far exact if we could project out all unphysical states strictly enforcing
the constraint Eq. (5). In the SSMF scheme three approximations are instead performed. First,
we mean-field decouple slave-spin and pseudofermion so that we are left with a non-interacting
fermionic Hamiltonian, and a lattice spin model where several slave-spins interact on site and
are also coupled to the slave-spins of neighboring sites. Second, we perform a mean-field
decoupling of the slave-spin lattice system in the spirit of a Weiss mean-field, and thus we
are left with a single-site spin Hamiltonian in an effective field. Third, we treat the constraint
on average, with site-independent (and spin-independent, since we address the paramagnetic
phases here) Lagrange multipliers λm, adjusted so that

〈
nfmσ

〉
=
〈
Szmσ

〉
+ 1

2
,∀i,m, σ. Details

of this procedure can be found, e.g., in Ref. [11] and references therein.

The resulting mean-field Hamiltonian is H−µN = Hs+Hf−µN , with

Hf−µN =
∑

i 6=jmm′σ

√
ZmZm′ tmm

′

ij f †imσfjm′σ +
∑
imσ

(εm−λm+λ0m−µ)f †imσfimσ , (8)

and Hs =
∑

iH
i
s with

H i
s =

∑
mσ

(
hmO

†
mσ +H.c.

)
+ λm

(
Szmσ +

1

2

)
+Hs

int[i] , (9)

where the self-consistent parameters are

Zm = |〈Omσ〉|2, (10)

hm =
∑
j 6=i,m′

tmm
′

ij

√
Zm′

〈
f †imσfjm′σ

〉
(11)

λ0m = hm
√
Zm

2
〈
n̂fm
〉
− 1〈

n̂fm
〉(

1−
〈
n̂fm
〉) (12)

the latter being a shift due to the mean-field procedure, which reduces to λm, and thus cancels
it, in the non-interacting limit [11].

Solving these equations iteratively until convergence yields the renormalized quasiparticle Hamil-
tonian Eq. (8), the bandstructure of which can be compared with the quasiparticle bands mea-
sured in ARPES. In particular the orbitally-resolved quasiparticle weight Zm is the inverse of
the orbitally-resolved mass enhancement, and εm−λm+λ0m can be seen as a renormalized local
orbital energy.

The slave-spin Hamiltonian is still a many-body Hamiltonian that can be used to calculate local
correlation functions, here we will see the (z component of the) total local magnetic moment〈(∑

m(Szim↑−Szim↓)
)2〉.
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5 Hund’s metal physics

Application of the SSMF to the multiorbital Hubbard models9 for AFe2As2 with A=Ba, K, Rb,
and Cs leads to the results reported in Fig. 5. All the plotted quantities show a clear crossover
as a function of U between a weak-coupling and a strong-coupling behavior.
For the lower range of U all the quasiparticle weight Zm are grouped, weakly dependent on U
and barely smaller than 1, their non-interacting value. Analogously, the orbital-resolved mass
enhancements, which are exactly their inverse, lie barely above 1 for the whole range. Also the
renormalized orbital energies evolve smoothly and the local magnetic moment remains near its
small non-interacting value.
All quantities change rapidly around the crossover value of U , and above it one sees a com-
pletely different behavior: The Zm have spread and dropped to small values below (some way
below) 0.5, and correspondingly the mass-enhancements are very selective and reach very high
values (extremely high for the t2g orbitals and in particular dxy); the renormalized orbital ener-
gies have rearranged and now are very close to one-another, while the local magnetic moment
has risen and is now very close to its saturation value 5/2. This behavior is the Hund’s metal.
It is to be noted that the crossover is sharper and happens earlier for the alkaline compounds
A=K, Rb, Cs than for BaFe2As2. This is mainly due to the difference in the average electron
density. As said the alkaline compounds host 5.5 electrons/Fe on average while BaFe2As2 has 6
electrons/Fe (and indeed the chemical potentials in the calculations are adjusted so to keep these
densities at all interactions). The sharpness of the crossover culminates at half-filling where it
converges with the Mott transition. This implies that the Hund’s metal is a zone at U larger than
the Uc for the Mott transition at half-filling that can be entered both increasing the interaction
strength and reducing the doping towards half-filling. In other words the Hund’s metal is the
doped Mott insulator in presence of sizeable Hund’s coupling.
This behavior is clearly understood when analyzing the same features in a 5-orbital Hubbard-
Kanamori model of featureless simplified bands (i.e. εm=0 for all orbitals and tm,m

′

ij = t δm,m′

for i nearest neighbor of j on an infinitely-dimensional Bethe lattice, that has a semicircu-
lar DOS of half-bandwidth D=2t). As visible in Fig. 6, the characteristic crossover [2, 3] to
the Hund’s metal reported for all integer fillings from n=8.0 to n=5.0 (half-filling)10 clearly
becomes sharper the more half-filling is approached, and is obviously connected to the Mott
transition at half-filling (yellow sharp drop). This strong-correlation behavior being connected
to the prevalence of high-spin local configurations favored by J, as outlined previously, it is
instructive to plot the relative weight of these configurations compared to the others. Indeed
for U/D = 3.0 and J/U = 0.25 it is visible that the high-spin configurations of each sector
dominate (i.e. compared to the other configurations with the same number of electrons), and all
the more the closer the system is to half-filling.

9In these calculations as a function of U a fixed ratio J/U = 0.25 was kept. Indeed, it was shown [12, 13]
that the physical results for the Kanamori interaction with J/U = 0.12 ÷ 0.15 as estimated by c-RPA are best
reproduced in SSMF increasing the ratio to J/U = 0.25.

10The model being particle-hole symmetric the curves are also representative of the filling between n=2.0
and n=5.0.
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Figure 4.4: Orbitally-resolved quasiparticle weights (upper panels), mass enhancements (mid-
upper panels), on-site energies (mid-lower panels) and total local magnetic moment for BaFe2As2,
KFe2As2, RbFe2As2 and CsFe2As2 as a function of the local Coulomb interaction U for a value of
Hund’s coupling of J/U = 0.25.

for an on-site Coulomb interaction of U = 2.7 eV and a value of Hund’s coupling of

J/U = 0.25. The orbitally-resolved quasiparticle weights Zm obtained in this case

are 0.07 for the dxy orbital, 0.20 for the dxz/yz orbitals and 0.42 and 0.37 for the eg

orbitals. The renormalized band structure (Fig. 4.3b) is between 2.5 and 3 times less

dispersive than that calculated with DFT (Fig. 4.3a). This renormalization factor

very much coincides with the phenomenological prefactor that is typically added to

the DFT band structures in order to compare them with ARPES measurements.

Due to this renormalization of the band structure, one would expect that the DOS

of quasiparticles increases and all the features move closer to the Fermi level.

In Fig. 4.4 we show the dependence of the quasiparticle weights, mass enhance-

76

Fig. 5: Slave-spin mean-field results for AFe2As2 with A=Ba, K, Rb, Cs as a function of the
interaction strength U (for J/U=0.25). From top to bottom rows: orbitally-resolved quasi-
particle weights Zm, orbitally-resolved mass enhancements (m∗/mb)m = 1/Zm (log scale),
renormalized orbital energies and z-component of the local magnetic moment. A clear cross-
over from a normal metal to the Hund’s metal behavior is visible just below the dashed line,
which marks the interaction value (close to the one calculated in c-RPA) used for the calcu-
lations reported in Fig. 1. The crossover is sharper and happens faster in the calculations
for the alkaline compounds (5.5 electrons/Fe) than for BaFe2As2 (6 electrons/Fe), owing to the
influence of the half-filled Mott insulator. (courtesy of Pablo Villar Arribi [8])

It is clear that both for the realistic calculations and for those in the idealized model, Hund’s
coupling triggers a behavior where the local high-spin configurations prevail and the quasipar-
ticle weight becomes small (and the mass enhancement large) and selective, all the more for
filling near half, but only for values of the interaction strength larger than the critical value for
the Mott transition at half-filling. It is worth noticing that the Mott insulating states at all the
other fillings play very little role in the zone of the phase diagram we are discussing (where the
interaction strength U is of the order of the bandwidth or even smaller), relevant to the Fe-SC,
because they are sent at much higher critical U values. Conversely the role of the Mott insu-
lator at half filling is clearly dominant, and it seems to act as a catalyst for the Hund’s metal,
amplifying its features with its proximity.
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Fig. 6: 5-orbital Hubbard Kanamori model with J/U = 0.25. Upper panel: quasiparticle
weight Z as a function of the interaction strength U for the integer fillings between half-filling
(n=5.0) up to 8 electrons per site, showing the increasing sharpness of the crossover with
the proximity to the Mott transition at half-filling. Lower panel: relative weight of the high-
spin configuration with the indicated number of electrons in the ground state of the slave-spin
Hamiltonian as a function of the filling of the system for U/D = 3.0. The weights for all other
configurations are also plotted in this graph, most being indistinguishable from the x-axis.
(adapted from [14])

But why is it so? Why is Hund’s coupling so efficient in inducing a Mott insulator at half-
filling and why are correlations in its proximity so much stronger than at J=0? We can gain
this insight by inspecting a few analytical results that can be obtained within SSMF in these
idealized models.
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Fig. 7: Mott transition in the half-filled Hubbard model studied with SSMF (or equivalently
Gutzwiller approximation or slave-boson mean-field). Independent bands (purple line) com-
pared with two bands in absence (green) and in presence (light blue) of Hund’s coupling J.
It might surprise that at strong coupling the second case is less correlated then the first, and
the third more correlated than the second, despite the opposite overall trend in the inter-orbital
interaction strength (columns sketched on the right). [14]

6 The working mechanism of Hund’s induced correlations

The counter-intuitive nature of Hund’s induced correlations can be illustrated by the following
simplified paradoxical puzzle, summarized by Fig. 7. Let’s imagine a half-filled multi-orbital
Hubbard band with featureless bands (as before we can take a semi-circular DOS of bandwidth
W = 2D, i.e., D(ε) ≡ 2

πD

√
(1− ( ε

D
)2)) and no inter-orbital hopping.

• If all inter-orbital interaction is switched off too one obtains a collection of single-band
Hubbard models, not talking to each other. Their behavior, in particular with respect to
the Mott transition will be that of a one-band model (purple line in the figure). Its critical
coupling for the Mott transition in SSMF (and in Gutzwiller approximation or slave-
boson mean-field) is Uc = −16ε̄, where ε̄ is the bare delocalization (“kinetic”) energy
at half-filling, i.e., ε̄ ≡

∫ 0

−Ddε εD(ε) ' −0.2122D. As visible in the figure this gives
Uc ' 3.4D ' 1.7W.

• Let’s now turn on the interaction between the different orbitals. Let’s focus for simplic-
ity on the two-orbital case. At J=0 the electrons in the two orbitals will add to their
intra-orbital repulsion U and inter-orbital repulsion U to electrons in the other orbital
irrespectively of their spin orientation. One might naively expect that this additional re-
pulsion makes the system more correlated. This is however not the case: as visible in the
figure (green line) the quasiparticle weight lies systematically above that of independent
bands for moderate to strong interactions, and the Mott transition happens at much larger
Uc ' 2.5W !
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• Even more puzzling, let’s now reduce the inter-orbital interaction compared to the intra-
orbital one, and even more so for electrons with parallel spins. This is exactly what is done
for finite Hund’s coupling J/U. Again one might expect this reduction in the electronic
repulsion to de-correlate the system, but one finds the opposite. The quasiparticle weight
lies below the one for J=0 at moderate to strong interactions, and the Mott transition
happens precipitously at a much smaller Uc ' W !

The puzzle is solved by the explicit calculation of Uc, that can be effected analytically in SSMF
for any number M of orbitals both for J=0 and finite J. It turns out that a naive balance
between bare kinetic energy and interaction strength is not enough to understand the degree
of correlation of the system. The energy and degeneracy of local multiplets and the processes
available for fluctuating between different charge states are of importance instead, and these are
tuned by Hund’s coupling, as we are going to see now.

In the slave-spin mean-field approximation11 a Mott insulator is a solution in which Zm = 0.
By the self-consistency equation Eq. (11), this implies hm = 0. Thus in proximity of a Mott
insulator a perturbative treatment in hm of the slave-spin problem can be performed.
In the half-filled, particle-hole symmetric case with no crystal-field splitting (i.e. εm = 0),
µ=λm=λ0m= 0 and cm= 1. Then the unperturbed Hamiltonian is simply Hs

int[i] from Eq. (6).
At T=0 we only need the ground state of this Hamiltonian, which will have a different degen-
eracy d0 depending on the value of J, so later on we will distinguish the J=0 from the finite J
case. The perturbing Hamiltonian is

V ≡ H i
s −Hs

int[i] = 2h
∑
mσ

2Sxmσ = 2h
∑
mσ

(
S+
mσ + S−mσ

)
, (13)

where h ≡ hm is here equal for all the M orbitals. It simply flips any of the slave-spins.
It removes the ground state degeneracy at the second order in h (the perturbation has no ma-
trix elements within the degenerate subspace), and in order to obtain the “correct” unperturbed
ground state

∣∣φ(0)
0

〉
(the one to which the perturbed ground state tends for h → 0) one has

to diagonalize the matrix H ′ ≡ V
(
E0−Hs

int

)−1
V in the degenerate subspace, where E0 is

the unperturbed ground state energy. The ground state ket will have a correction at the lin-
ear order instead, which according to standard perturbation theory reads:

∣∣φ(1)
0

〉
=
∣∣φ(0)

0

〉
+∑

|s〉6=|φ0〉〈s|
(
E0−Hs

int

)−1
V
∣∣φ(0)

0

〉
|s〉.

The self-consistency condition Eq. (11) is needed to determine the solution of the mean-field
equations, and in the present case simplifies to

h =
√
Zmε̄ . (14)

√
Zm =

〈
2Sxmσ

〉
is itself a function of h, and this relation determines the self-consistent value

of h for a given set of physical parameters. The critical parameters for the Mott transition are
found when the solution goes to h=0, so the linear term in h is enough.

11In the presentation of the slave-spin analytical calculations we follow closely the Appendix of Ref. [15]
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A particularly relevant and insightful quantity to calculate then is

4hM
〈
2Sxmσ

〉
= 〈V 〉 =

〈
φ
(1)
0 |V |φ(1)

0

〉
= 2
〈
φ
(0)
0

∣∣V (E0−Hs
int

)−1
V
∣∣φ(0)

0

〉
, (15)

(where we used explicitly the fact that
〈
φ
(0)
0 |V |φ(0)

0

〉
= 0).

Eq. (15) illustrates that 〈V 〉 (and thus 〈2Sxmσ〉) counts the number of ways in which flipping
any two slave-spins brings the ground state into (a state having overlap with) itself, weighed by
2/(E0−ES), twice the inverse of the (negative) energy difference between the ground state and
the intermediate excited state.
In physical terms this tracks the number of processes by which a particle can hop onto a neigh-
boring site and back to any of the spin-orbitals still turning the ground state into (having overlap
with) itself [16]. This is in strict analogy with the perturbative arguments determining Kondo
coupling of an impurity in a bath which through dynamical mean-field theory describes the
itinerancy of particles in a lattice model [3].
Now these processes are enhanced in presence of large degeneracy of the energy multiplets. We
illustrate this in the following by comparing the case at J=0 with that for finite J .

• J=0, SU(2M) symmetry

At J = 0, up to a constant shift, Hs
int[i] = U/2

(∑
mσ S

z
mσ

)2
= U/2

(
Sztot
)2. The system has

an even number 2M of slave-spins on each site, hence any state with Sztot = 0 is a ground
state. Owing to the SU(2M) symmetry of the J = 0 problem, there are d0 =

(
2M
M

)
such states

(|Sztot=0; l 〉, for l=1 . . . d0) , corresponding to the number of ways to take half of the 2M slave-
spins up and half down. Physically this corresponds to the ways of putting M particles in 2M

spin-orbitals, owing to the half-filling of the system.
All the states with one flipped spin are U/2 higher in energy from the ground state and hence
one can diagonalize H ′ = −2V 2/U. The lowest-energy eigenstate of the restriction of H ′ to
the unperturbed degenerate manifold is

∣∣φ(0)
0

〉
=

1√
d0

d0∑
l=1

∣∣Sztot=0; l
〉

(16)

i.e., the linear combination of all the degenerate basis states in the ground state manifold with
all plus signs. This can be easily checked by inspection. Indeed H ′ flips down any of the M
spins pointing up, and then flips up any of the now M+1 spins pointing down. The analogous
process takes place starting with a flip up. This makes 2M(M+1) possible processes. The fact
that all of the d0 degenerate basis states with M spins up and M spins down are included in
the linear combination ensures that all these “exchange” processes are active. The plus signs
in the linear combination also ensures that all the corresponding −U/2 contributions add up,
generating the lowest possible energy.
This, by inserting |φ(0)

0 〉 into Eq. (15) results in

〈2Sxmσ〉 = −8h

U
(M+1) (17)
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• J 6=0 with density-density interaction, Z2 symmetry

For J 6= 0, Hs
int[i], Eq. (6), splits the manifold with Sz= 0 and for the case of density-density

only interaction the ground state is only two times degenerate.12 The two degenerate states
are |1, . . . , 1, 0, . . . , 0〉, with all M slave spins corresponding to spin-orbitals m ↑ —in our
ket notation the first M of all the 2M slave-spins—pointing “up” (1, in our notation) and the
remaining ones pointing “down” (0 in our notation), or the inverse |0, . . . , 0, 1, . . . , 1〉.
The excitation energy of the states that can be reached by flipping one spin starting from the
ground state and flipped back to it is Ueff/2 with Ueff = U + (M−1)J , so the matrix to be diag-
onalized to find the “correct” unperturbed ground state is the restriction of H ′ = −2V 2/Ueff.
This degeneracy is split at order h2M, but the “correct” unperturbed ground state is still the
linear combination of these two basis states with the plus sign∣∣φ(0)

0

〉
=

1√
2

(
|1, . . . , 1, 0, . . . , 0〉+ |0, . . . , 0, 1, . . . , 1〉

)
. (18)

However to leading order h2 only 2M processes are active: those flipping twice a given slave
spin. Thus inserting

∣∣φ(0)
0

〉
into Eq. (15) gives

〈2Sxmσ〉 = − 8h

Ueff
= − 8h

U + (M−1)J
(19)

which, for any M ≥ 2, is much smaller than in the J=0 case.
Using this in the self-consistency condition Eq. (14) and eliminating h one can solve for the
critical interaction for the Mott transition

Uc =

 8(M+1)|ε̄|, J = 0, ∀M (includingM= 1)

8|ε̄| − (M−1)J J 6= 0 and M ≥ 2
(20)

the latter relation being equivalent to say that to U eff
c = 8|ε̄|.

These results illustrate our point that the degeneracy of the ground state and of the multiplets
visited by charge fluctuations enhance the itinerancy, through the activation of extra hopping
channels.
This is the reason for the reduction of correlations in a multi-orbital system in absence of Hund’s
coupling, indeed in that case the Uc grows with the number of orbitals M.
Hund’s coupling changes the situation, and increases the correlation strength for two reasons,
as obvious comparing the expressions eqs. (17) and (19):

1. it reduces the number of processes contributing to 〈V 〉 (and thus to 〈2Sxmσ〉), thus elimi-
nating the M+1 prefactor,

2. increases the value of U eff, thus increasing the cost for charge fluctuations, and weighing
more the denominator in Eq. (19).

12In the case of full Kanamori interaction, including the spin-flip and pair-hopping terms, the degeneracy of
the ground-state multiplet is not as reduced. However it is still much smaller than for the J = 0 case. Thus our
treatment, albeit quantitatively not exact, is qualitatively representative also of the Kanamori case.
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Fig. 8: Doping dependence of the quasiparticle weight for doped half-filled Mott insulators: a
3-orbital Hubbard model with and without Hund’s coupling J is compared to the single-band
case. Visibly, the multi-orbital case with J=0 is less correlated than the single-band case (even
for the considerably larger value of U, chosen so to be well beyond Uc(J=0)). The multi-
orbital case in presence of J is much more strongly correlated than both (even more so when
considering the total doping and not the doping per orbital as shown here). The parallel with
the behavior of Z at half-filling as a function of U < Uc plotted in Fig.7 is obvious, for the
reasons explained in the main text. (adapted from [14])

These two aspects were explored from DMFT perspective in Ref. [17]. Here we have shown
explicitly the mechanism at work through an analytical calculation, showing how the many-
body hopping channels participate to the geometrical factor enhancing or reducing Uc. In this
respect it is worth mentioning that away from integer fillings other than half the reason 1 above
still applies, while reason 2 does not. In fact U eff = U+3J in these cases, thus rather pushing Uc
away. Nevertheless in most of the U range correlations are found enhanced because of reason 1.

A further interesting point is that here with the same formalism the dependence of the quasi-
particle weight Z on the doping for a doped Mott insulator can be obtained. After a similar
calculation and for the same reasons as above one gets

Z =


M+1√
1−Uc/U

δorb, J = 0, ∀M (includingM=1)

1√
1−U eff

c /U
eff
δorb J 6= 0 and M ≥ 2

(21)

where δorb = δ/M is the doping per orbital.
Typical behaviors are illustrated in Fig. 8 for a three-orbital Hubbard model. As it happens, for
the half-filled metal, also in the present case of a doped Mott insulator, for the same conditions
of doping, the multi-orbital case with J=0 is much less correlated than the single-band case.
The multi-orbital model in presence of J is instead much more correlated than the single band
case. It is to be noted, by the way, that the plot compares the models at the same doping per
orbital. As a function of the total doping in the model the multi-orbital case is then even more
strongly correlated than it appears on this plot, compared to a typical single-band doped Mott
insulator.
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Thus overall not only the half-filled Mott insulating state is strongly favored by Hund’s cou-
pling, given the strong reduction of Uc due to J, but also the correlations, when doping this
Mott insulating state, are enhanced and decrease more slowly with doping than in the case
without J. This is, in essence, the reason why Hund’s metal physics is so relevant for Fe-SC,
and all the more the closer to half-filling they are, as anticipated at the end of section 5.

7 Conclusions

In this lecture we have discussed the way in which the Hund’s metal paradigm helps understand-
ing the metallic phases in Fe-based superconductors, hopefully clarifying the ground on which
high-Tc superconductivity prospers. We have detailed the way in which realistic DFT+slave-
spin mean-field calculations are performed, and how they capture extremely well the behavior of
the strong electronic correlations characterizing these phases. We have then exposed the gears
inside the calculations, using simplified models—yet having all the essential features of the
realistic simulations—in order to show explicitly how Hund’s coupling enhances the correla-
tions. We have hopefully given an intuitive justification to its influence that can initially appear
counter-intuitive. In particular we have shown how, rather than a simple “arm wrestling” be-
tween bare kinetic energy of the electrons and their interaction strength, correlations should be
viewed as a result of the available channels for charge fluctuations, and their energy cost, both
of which are heavily tuned by Hund’s coupling.
Before closing, we should mention that our calculations were all formally done at zero tempera-
ture. They are indeed fully representative of the low-but-finite-temperature Fermi-liquid phases
encountered in Fe-SC that we have discussed. However more and equally rich Hund’s metal
physics [18] unveils when raising the temperature, in particular when crossing the Fermi-liquid
coherence temperature, both in Fe-SC and in other Hund’s metals, and in the related model
calculations [2].
Furthermore, we have not even tried to touch upon other crucial aspects of the physics of Fe-
SC that are impacted by Hund’s coupling. The magnetic phases found in these materials are
influenced by the balance between Hund’s coupling and non-local exchange mechanisms, while
nematicity [19] and superconductivity [20–22] might be amplified by Hund’s metal correlations.
Some of these aspects are still an ongoing research frontier, and could be interesting material
for a future lecture.
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