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6.2 Claude Ederer

1 Introduction

Soon after the emergence of dynamical mean-field theory (DMFT) as a powerful approach
to address models of interacting fermions on a lattice, the idea emerged to combine DMFT
also with realistic electronic structure calculations using density functional theory (DFT) in the
local density approximation (LDA) [1,2]. Thereby, the auxiliary independent-particle Kohn-
Sham (KS) band-structure obtained within LDA is taken as a “zeroth order” approximation to
the interacting problem [1]. After constructing a minimal tight-binding (TB) representation
of the most relevant bands, a local electron-electron interaction is added to the corresponding
Hamiltonian, resulting in a realistic materials-specific multi-orbital Hubbard model. For the
case of transition metal (TM) oxides or related materials, these “most relevant bands” generally
consist of partially filled bands around the Fermi level with dominant TM d orbital character,
and sometimes also of bands with strong O p orbital character. Thus, a TB representation
of these bands is typically based on localized d-like orbitals centered on the TM sites, and
potentially also p-like orbitals on the O atoms or other anionic ligands.

The basic idea is similar in spirit to the DFT+U method [3,4], where the underlying energy func-
tional and the KS potential are supplemented by terms explicitly describing the local electron-
electron interaction within a subset of electrons, typically corresponding to localized d or f
states. However, while the local interaction within DFT+U is treated on the level of a static
mean-field approximation, within the DFT+DMFT approach the resulting multi-band Hubbard
model is treated by considering a dynamical mean-field.! Thereby, each interacting site on the
lattice 1s viewed as an individual atom that is embedded in an effective bath. Thus, the bath
in principle consists of all other atoms in the system. Electrons can dynamically fluctuate be-
tween the selected atom and the bath. Electrons on the atom interact with each other via the
local electron-electron interaction, while electrons in the bath are considered as non-interacting.
Thus, the original lattice problem is mapped to an Anderson-type impurity problem. However,
since the bath of this effective impurity problem indeed consists of all other sites, which are
either equivalent to the selected site or connected to it via their respective effective baths, the
bath itself is related to the solution of the impurity problem via a self-consistency condition.
The fact that this approach has evolved into a powerful method that is nowadays also applied
to the treatment of rather complex materials systems involving, e.g., heterostructures, surfaces,
or point defects (see, e.g., [5—7]), is closely tied to the availability of efficient and accurate
computational methods to solve the corresponding Anderson impurity problem(s). Various ex-
amples of such impurity solvers have been discussed in other lecture notes within this series and
therefore will not be discussed here. We just note that the effect of the bath, the hybridization
between the bath and the impurity site, and the non-interacting part of the local Hamiltonian,
are encoded in the form of a non-interacting local Green function, the so-called Weiss field, G,
usually expressed in a basis of suitable localized orbitals. The impurity solver then takes G, as

Mn these lecture notes, we use the term “DFT+DMFT” instead of the more traditional “LDA+DMFT”, ac-
knowledging the fact that many calculations are nowadays using DFT functionals based on the generalized gradient
approximation or other semi-local exchange correlation (xc) functionals. Thus, “DFT” in “DFT+DMFT” should
be read as “DFT using some approximate semi-local xc functional”.
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input, together with the specific form of the local interaction Hamiltonian, ﬁim, and computes
the full one-particle Green function of the impurity, G'™ as well as the local impurity self en-
ergy, L™, which are related via the Dyson equation (G'™)~! = G;! — X™_ The impurity
self energy is then used as purely local approximation to the self energy of the original lattice
problem, and a new estimate of the Weiss field can be obtained from the local component of
the lattice Green function. This procedure, described in more detail in Sec. 2, is then repeated
until a self-consistent solution is obtained, such that the local part of the lattice Green function
becomes identical to the impurity Green function.

In most realistic cases, the DMFT treatment of the local interaction results in a redistribution of
electrons compared to the underlying initial DFT calculation. For example, in systems where a
local crystal field splitting lifts the degeneracy between partially filled d levels, electrons can be
redistributed between the different non-degenerate orbitals, and in complex crystal structures,
where several inequivalent atomic sites are mapped on different effective impurity problems,
electrons can be redistributed between different sites. This redistribution of electrons corre-
sponds to a change in the electronic charge density of the system, which consequently also
changes the KS potential that was used in the initial DFT calculation, and thus also the cor-
responding band structure changes compared to the initial bandstructure that was used to con-
struct the multi-orbital Hubbard model for the DMFT treatment. Therefore, in order to arrive
at a truly realistic and potentially also quantitative and predictive method for the treatment of
complex correlated materials, an additional self-consistency over the charge density is required.
Furthermore, if quantities related to total energy differences are of interest, then the condition
for stationarity of the underlying energy functional also demands charge self-consistency.
However, charge self-consistency increases the required computational effort and simultane-
ously also increases the complexity of the computational scheme, since DFT calculations have
to be performed for which the KS potential is calculated from an externally modified charge
density, and the information about this modified charge density has to be transferred from the
DMEFT part of the calculation to the DFT code that is used. Therefore, in practice, charge self-
consistency is often neglected in favor of so-called “one-shot” calculations, where the DMFT
calculation is essentially a “post-processing” of the DFT results, and the DFT calculation is
merely providing a fixed input to the DMFT part. It is therefore essential to be aware of the
potential limitations of such one-shot calculations, and to recognize cases that require the full
charge self-consistent treatment.

In these lecture notes, we present several case studies of DFT+DMFT calculations for specific
materials where charge self-consistency is important and leads to noticeable differences from
the one-shot results. However, before discussing the various examples in Sec. 4, we start with a
detailed description of the charge self-consistent DFT+DMFT approach, which is presented in
Sec. 2. Thereby, we emphasize a clear and transparent definition of what represents “the most
relevant bands”, and show how all relevant quantities can be transformed back and forth between
the KS Bloch basis and the localized orbitals centered on the relevant sites, which is required for
a fully charge self-consistent treatment. We also briefly discuss how the DFT+DMFT approach
can be derived from a specific approximation to the Gibbs free energy functional, providing
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a solid theoretical foundation of the method. Then, before discussing the several examples
demonstrating the effect of charge self-consistency, a brief summary of the most relevant aspects
of TM oxides is provided in Sec. 3, which is intended to help to better understand the different
materials aspects in the various case studies.

2 Charge self-consistent DFT+DMFT

2.1 Definition of the correlated subspace and Wannier functions

The main conceptual idea behind DFT+DMFT as a “first principles’-based method for quantita-
tive materials-specific electronic structure calculations, is based on a separation of the electronic
degrees of freedom into a strongly interacting and a weakly interacting part. The basic assump-
tion is, that the weakly interacting subspace, which makes up the largest part of the electronic
Hilbert space, is well described by DFT using standard local or semi-local exchange-correlation
functionals, and that only a small subset of electronic degrees of freedom, the correlated sub-
space, C, requires a more sophisticated treatment of the local electron-electron interaction. The
correlated subspace typically involves partially filled bands around the Fermi level correspond-
ing to relatively localized orbital degrees of freedom. The assumption that a more sophisticated
treatment is only necessary for a small subset of electrons, is of course to some extent also a
matter of necessity, since a full treatment of all electronic degrees of freedom within DMFT (or
another more advanced computational many-body approach) is not realistically feasible.

In the case of transition metal oxides, the correlated subspace typically consists of the “d elec-
trons” corresponding to the transition metal ions with partially filled d shell, or of a subset
thereof, such as, e.g., either the e, or ¢, subshells in systems with a pronounced octahedral
crystal field splitting. However, it should be noted that, as discussed also in some detail in
Sec. 3, there is some ambiguity what is meant by the “d electrons” in a specific material, re-
flecting the fact that local angular momentum is not a good quantum number in a periodic solid.
The choice of the correlated subspace for a specific material is therefore always to some de-
gree based on physical and chemical intuition, or other specific insights on what are the most
important degrees of freedom that require a treatment beyond conventional DFT. The obtained
results will generally depend on this choice. Nevertheless, in many cases it has been found that
even somewhat different but reasonable choices can lead to consistent results.

The correlated subspace is typically defined in terms of a set of orthogonal spatially localized
orbitals, |¢,, 1), centered on specific sites within each crystallographic unit cell, in the following
called the “correlated sites”. T is a vector of the underlying Bravais lattice and indicates the
crystallographic unit cell where the corresponding orbital is located, while m represents the
orbital character including spin. In cases with more than one correlated site per unit cell, m
indicates both the specific site within the unit cell as well as the corresponding orbital character.
For transition metal oxides, the correlated sites typically coincide with the positions of the
transition metal cations.

It is convenient to work with Bloch sums, i.e., Fourier transforms, of the local orbitals, defined
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as follows

14
(2m)?

where the integral over k is taken over the Brillouin zone (BZ) of the crystal and V' is the unit

|¢mk> = Z eik.T|¢mT> <~ ’¢mT> / dk e_lk T|¢mk> (1)
T

cell volume. Since in practice one always works with a finite set of KS Bloch states, [1,x),
corresponding to a finite number of bands (indexed by v), an arbitrary orbital generally cannot
be exactly represented in this Bloch basis. Consequently, the projections of a set of given trial
orbitals into this restricted Bloch space R:

‘¢£§k)> = Z ‘wuk><wuk‘¢mk>7 (2)

VER

are not necessarily orthogonal to each other, even if the original trial orbitals were. However
the set of \gzﬁgfk) ) can always be subsequently orthogonalized, using, e.g., Lowdin orthonormal-
ization (see, e.g., [8]). Furthermore, only the projection of |¢,,) into R is relevant for the
DFT+DMEFT treatment. Therefore, in the following we always use the orthonormalized projec-
tions, |¢$()>, of the original trial orbitals as our local orbital basis, and we drop the superscript
R again for ease of notation. Thus, from now on we can assume that the |¢,,x) form an or-
thonormal basis and are completely representable in ‘R.

A set of localized orbitals that exhibits this property automatically by construction are Wannier
functions [8], defined as

V V ,
(W) = (27)3/ dke™ T Z |t = 27)8 /Bz dk e Tw ). 3)

The functions |w,k) = >, U,Elﬁzwyk) are equivalent to the Bloch sums |¢,,x) defined from
the local orbitals |¢,,r) and are sometimes called “k-space Wannier functions” or “remixed
Bloch states”, since they are defined as a linear combination of the Kohn-Sham eigenfunctions
corresponding to a set of bands at the same k-point. Specific Wannier functions are defined by a
specific choice of the matrices UX). In fact, the procedure described above, i.e., projecting some
localized trial orbitals on the Bloch space with subsequent Lowdin orthonormalization, is one
widely-used approach to obtain Wannier functions, which then typically closely resemble the
orbital character of the initial trial orbitals. Such Wannier functions have been termed ‘“Wannier
functions via projection” or “projected Wannier functions” [8]. Another wide-spread possibility
is to minimize the total quadratic spatial spread of the Wannier functions, leading to so-called
maximally localized Wannier functions (MLWFs) [8]. In this case, Wannier functions defined
via projections are often used as starting point for the spread minimization and thus the resulting
MLWFs typically also closely resemble the orbital character of the initial trial orbitals.

The summation over the band index v in Eq. (3) is often further restricted to only a specific
group of bands, which can either be completely isolated from other bands at lower and higher
energies, or is defined within a certain energy window around the Fermi level. The resulting
subspace is called the Wannier space, VV, and is a subset of R. If the number of Bloch states
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in the sum in Eq. (3) matches the number of Wannier functions, i.e., if the dimension of the
correlated subspace C is identical to that of the Wannier space )V, then the matrices U,Elﬁl) are
square unitary matrices for each k, and the two subspaces are in fact identical. If the number of
Bloch functions in the sum is larger than the number of Wannier functions (which is generally
the case for bands that are “entangled” with other bands at lower and/or higher energies), then C
is a subspace of V. In this case, (U (0 U (k))mm,:5mmr still holds, while (U )7 (k)T)W,#é,,,/,
reflecting the fact that the transformation from the Bloch to the Wannier states is well-defined,
whereas the inverse transformation is not.

The relation between the localized orbitals and the Kohn-Sham Bloch states can also be encoded

via so-called projector functions

P (k) = (dmr—0|thok)- 4)

*

These projector functions are equivalent to the matrices U in Eq. (3), with P, (k) = (U,%z) :
To be consistent with a large part of the DFT+DMFT literature, from now on we use the projec-
tor functions P,,, (k) to define the transformation between the set of local orbitals | ¢,k ) and the
Kohn-Sham Bloch functions [, ). However, we note that these local orbitals, under the condi-
tion that they are orthogonal and fully represented within V, are nothing but Wannier functions,
and can also be expressed according to Eq. (3). Analogous to what is discussed above, the pro-
jector functions are square unitary matrices if C = W, i.e. P(k)-PT(k) = PT(k)-P(k) = 1.
Otherwise, (P(k)-PT(k))mm, = Oy still holds, but (PT(k)-P(k)) , # 6,,.

Finally, we summarize the different Hilbert spaces that we have defined: i) the restricted Bloch
space, R, which contains all the Kohn-Sham states obtained in the DFT calculation. This gen-
erally comprises all occupied and a certain number of unoccupied bands. i1) the Wannier space,
W, which contains only the Kohn-Sham states that enter the definition of the local orbitals, and
iii) the correlated subspace, C, which is spanned by the local orbitals centered on the correlated
sites, and in which the effective DMFT local impurity problem is formulated. Thereby, C is a
subspace of W, which is a subspace of R, i.e., C C W C R. In the following, mostly C and
W are relevant for the DFT+DMFT treatment, whereas the part of R that is not contained in
W is only indirectly affected through the change of the KS potential in the case of a charge
self-consistent calculation.

2.2 The DFT+DMFT self-consistency cycle

The central quantity that is evaluated within the DFT+DMFT approach is the one-particle lattice
Green function, which, expressed in the KS Bloch basis, can be written as

[G_l(k, zwn)} = (iwpt+p—epx) Op — AX, (K, iwy,). (5)

1274

Here, w, is the n-th Matsubara frequency, w, = (2n+1)7/3, with the inverse temperature
p = 1/T, p is the chemical potential, €, is the Kohn-Sham eigenvalue corresponding to |1, ),
and AY,,/ (k,iw,) is the DMFT self-energy correction expressed in the KS basis.
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The self energy correction is obtained by solving the effective impurity problems on the sym-
metry-inequivalent correlated sites, which are formulated in terms of the local orbital basis. The
resulting impurity self energies, Eisz, (iwy,), are then upfolded into the Bloch basis using the
projector functions P,,, (k)

AZVI//(k7 iwn) = Z[PT(k)]Vm AEmm’ (an) Pm’u’(k)' (6)

mm/’

Note that here a potential non-unitarity of the transformation from C to ¥ is not a problem, since
AJlis zero by definition outside of C. Before upfolding, one usually subtracts a double counting
(DC) correction from the impurity self-energy, which is meant to contain all contributions of the
local interaction within the correlated subspace that are already included in the KS potential, i.e.
AZ i (i) = ™ (itw,,) — ZPC | Typically, the DC correction is just taken to be a rigid shift
of the local potential that depends on the total occupation of the local orbitals on that site, i.e.,
D€ is diagonal in m and depends only on the specific site related to m but not on its actual
orbital character (remember that we defined m to denote both orbital character and correlated
site). A specific expression for X2C | is given in Sec. 2.3. Note also that the self energy in the
local orbital basis is k-independent, due to the purely local character of the effective impurity

problem, whereas it gains some k-dependence in the upfolded Bloch basis.
After performing the matrix inversion of Eq. (5) to obtain G, (k, iw,, ), the local Green function
corresponding to the correlated sites is obtained by downfolding again back to the local orbital

basis

V
Gltisn) = s 3 [ A PulK)Guns i) [P R ™)

Here, the summation over v and ¢/ can in principle be restricted over W, since outside of W
the projector functions are zero by definition.

The local Weiss field defining the effective local impurity problem(s) is then obtained through
the Dyson equation G, ' = (G'*¢)~! 4 X™ (with all quantities defined as local matrices in C,
i.e., m and m’ always correspond to the same correlated site). Since X™ is in turn obtained by
solving the corresponding quantum impurity problem, this defines a closed set of equations, and
a self-consistent solution of this set of equations is found iteratively, as schematically depicted
by the “inner” cycle in Fig. 1. If self-consistency is achieved in this inner loop, then the impurity
self-energy 3™ that is obtained by solving the impurity model(s) is identical to the one from
the previous iteration step that was used obtain the corresponding Weiss field(s), Gy, and each
impurity Green function is identical to the corresponding local component of the downfolded
lattice Green function.

The procedure described so far corresponds to the usual DMFT self-consistency cycle for a
fixed single particle Hamiltonian defined by the KS band energies ¢,.. However, since these
band energies are calculated for the KS potential, and since the KS potential depends on the
underlying charge density, an additional self-consistency with respect to this charge density is
required.
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Fig. 1: Schematic depiction of the full DFT+DMFT self-consistency cycle. The “inner loop”
ensures self-consistency between the effective impurity Green function(s) and the local com-
ponent(s) of the lattice Green function, while the “outer loop”ensures charge self-consistency.
From the DFT perspective, the inner loop can also be viewed as a more elaborate way to obtain
the occupations n,, (k) from the solution of the KS equations.

The charge density? can be obtained from the Green function in its real-space representation by
summing over all Matsubara frequencies

p(r) = % > G(r,riwy). (8)

This can easily be seen from the fundamental definition of the imaginary-time Green function
in terms of field operators ¢ (r, 7)

G(rx's7) = (T, (b(r, 0091, 7)), ©)

where 7 is imaginary time and T, is the corresponding time-ordering operator. Thus, p(r) =
G(r,r’; 7=07), which, after Fourier transforming to Matsubara frequencies, leads to Eq. (8).
Within the basis of KS Bloch states, Eq. (8) can be written as

1 V ) "
o= 553 ooy / 0K (1) Gl (K, i) () (10)

v
B %’: (277')3 /dk wl’k<r>nzxv’(k)wv’k(r)a (11)
where we used ¥, (r) = (r|1,x) and also defined the density matrix

Ny (K) = % > Gk, iw,). (12)

ZNote that we are not distinguishing between the (electronic) charge density and the corresponding particle
density, i.e., we are using units where the electronic charge is equal to +1.
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Without considering the self-energy correction, AYX(k, iw,), in Eq. (5), G(k, iw,) represents
the uncorrected Kohn-Sham Green function, and the corresponding density matrix is diagonal
in the KS basis, n,,/ (k) — nfﬁéwl. Eq. (11) then becomes equivalent to the usual way the
charge density is obtained within KS DFT by summing over the occupied KS states, with the
only (in practice irrelevant) difference that here the occupations also include a temperature
(or ) dependent Fermi-smearing. Otherwise (and apart from a potential additional smearing
to improve convergence on a finite k mesh), the KS occupations, nX> are either one or zero,
depending on whether the corresponding KS eigenvalue ¢, is below or above the Fermi level,
15, where %5 is determined by the condition that the number of occupied KS states in the BZ
matches the number of electrons in the crystallographic unit cell.

If the self-energy correction is included in Eq. (5), and the full DFT+DMFT lattice Green func-
tion is used in Eq. (12), then the resulting density matrix is generally not diagonal any more in
the original Kohn-Sham basis. However, for practical implementations, it is often advantageous
to define a unitary transformation between all the KS states included in WV that diagonalizes the
corrected density matrix at each k point

N V) w20 (6) Vi () = iy (13)
Then, the charge density can be calculated from the transformed Bloch functions, Wuk% as
usual using diagonal occupations

o) =3 e [ Al (14)

with

Duac(r) = Y sl Vi. (15)

This has the advantage that, after transforming the KS Bloch functions according to Eq. (15),
the existing subroutines or functions already included in the DFT code can be used to evaluate
the corrected charge density.

In order to ensure full charge self-consistency, another (“outer”) iterative loop is added to the
computational procedure, as also indicated in Fig. 1, where the KS states and corresponding
band energies are recalculated from the KS potential, Vks, evaluated from the corrected charge
density obtained from the (inner) DMFT self-consistency loop. In practice, a suitable mixing-
scheme is typically applied to ensure or accelerate convergence of the iterative procedure.

If full charge self-consistency is achieved, then the system of electrons, which is divided into
a strongly correlated and a weakly correlated part, with the local electron-electron interaction
within the correlated subspace explicitly treated within DMFT, and all other interactions incor-
porated in the KS potential, gives rise to exactly the same density that is used to obtain this KS
potential. The KS potential, in turn, defines the KS bandstructure that enters the self-consistent
effective bath for the DMFT impurity problem(s).

While this approach appears conceptually reasonable, physically transparent, and, in the charge
self-consistent case, also internally consistent, so far the presentation of the DFT+DMFT method
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was mostly based on heuristic considerations. However, the DFT+DMFT approach can also be
put on a solid theoretical foundation within the conceptual framework of spectral density func-
tional theory [9], which is based on an effective action formalism of quantum field theory. A
rigorous derivation of the DFT+DMFT approach within this conceptual framework goes be-
yond the scope of these lecture notes. In the following, we therefore just briefly sketch some of
the main ideas.

The starting point is the generic problem of electrons in an external potential, interacting with
each other via a Coulombic, i.e., two-particle, interaction. Different approximate treatments of
this generic problem can then be constructed by (i) choosing different “observables” to describe
the system, (ii) dividing the Gibbs free energy functional into that corresponding to a simpler
“reference system” and a remaining “interaction” part, and (iii) finding a good approximation
for the interaction part as a functional of the chosen observables. Thereby, the reference system
includes a “constraining field” that ensures that the reference system has the same expectation
value for the chosen observables as the original interacting electron system. This allows to
formulate DFT, DFT+U, and DFT+DMFT all within the same conceptual framework, differing
mainly by the choice of the basic observables and the approximations used for the functional
representing the unknown part of the interaction energy.

Specifically, DFT is based on the electron density as the central observable and the interaction
energy is written as sum of the exactly known Hartree energy and the unknown exchange-
correlation energy functional, Ey.[p(r)], for which accurate and practically useful approxima-
tions exist. The reference system is the system of non-interaction KS electrons and the KS
potential takes the role of the constraining field, ensuring that the density of the KS system is
identical to that of the original interacting system.

In the case of the DFT+DMFT approach, the local part of the one-particle Green function is
chosen as an additional observable, in combination with the electronic charge density, and the
interaction part of the Gibbs free energy is written as a sum of the Hartree energy, the usual DFT
exchange-correlation energy functional, the interaction energy of the electrons corresponding
to the correlated subspace, and a DC correction. The first two terms are functionals of the
density, while the last two terms are expressed as functionals of the local Green function. The
DMFT approximation then corresponds to considering only purely local diagrams in the evalu-
ation of the interaction energy within the correlated subspace, and the impurity self-energy (or,
equivalently, the Weiss field) represents the constraining field for the local Green function.

The formal derivation of the DFT+DMFT approach within the conceptual framework of spectral
density functional theory, ensures that the self-consistent solution for the charge density and
local Green function correspond to a stationary point of the underlying free energy functional.
The total energy within DFT+DMFT can then be obtained by taking the zero temperature limit
of the free energy [9]

Eprrspmrr = Eprr|p(r)] + <[:[int> — Epc [GIOC] . (16)

Note that Epgr is usually evaluated within the DFT code and includes the band energy, i.e.,
the total energy of the KS electrons, plus additional terms that are all explicit functionals of
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p(r). Thus, the total energy reported by the DFT code needs to be corrected for the change in
the band energy, by considering the occupations of the KS states according to Eq. (12). The
interaction energy within the correlated subspace, <I§T int)» can be evaluated using the Galitskii-
Migdal formula

mt - Z Elmp an Gloc (iwn) ; (17)

’I’me

and a specific expression for the DC correction Epc is given in Sec. 2.3.

2.3 Local interaction Hamiltonian and double counting correction

There are still two aspects which have been left open up to now. This is the definition of the local
interaction Hamiltonian, Hiy, entering the effective DMFT impurity problem, and the question
of how to properly define the double counting correction in terms of X°¢ and Epc[G'].

The generic form of a local two-particle interaction, expressed in the local orbital basis of the
correlated subspace, is given by

§ AT At
1nt — mm m!m!" Cmo_cm//o_,cm///o./cm o (18)

{m}oa

where ¢! is the creation operator corresponding to an electron in orbital |¢,,,t) with spin o.
Note that we have used spin-independent local orbitals, and all creation and annihilation op-
erators in Eq. (18) are meant to correspond to the same site, so that we can drop the index T
for simplicity and we can interpret the index m as indicating only the corresponding orbital
character. The matrix elements U,,,,,,mm are defined as

Unntrotr = / dr / ' (1) 8t (1) Vi, ) oy (£) o (1) (19)

where V. (r, r’) represents the (screened) local electron-electron interaction experienced by the
electrons within the correlated subspace.

In practice, one usually uses a simplified parametrization for the interaction tensor U,/ m/ m.
Specifically, for the examples discussed in Sec. 4, a so-called Kanamori parametrization is used
(see, e.g., Ref. [10]), which contains only two independent parameters U and .J, representing
the average inter-orbital Coulomb interaction and the local Hund’s exchange, respectively, and
the interaction Hamiltonian becomes

Hi = U gy + (U=2J) Y Aty + (U=3T) D Ao

m#£m/ m#m/ o

(20)
A At a bt a4
—J Z ContCony Cont | Gy + Z Cont oy Cont 1 Conr
m#m/ m#m/
where, 7,,, = ¢! ¢, . The Kanamori form corresponds to the most general form of Hiy, for the

case of a three-fold degenerate t,, or two-fold degenerate e, subshell within cubic symmetry,
but is also used as approximate form in cases where these degeneracies are lifted. Another
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parametrization of ﬁim that is often used for calculations involving the full five-orbital d shell,
is the so-called Slater parameterization (see, e.g., Refs. [3,4]).

We note that the calculation of realistic materials- and orbital-specific screened interaction pa-
rameters, i.e., the calculation of specific values for U and J in Eq. (20), or of the full interaction
tensor in Eq. (19), is an active research area (see other lecture notes in this series). To arrive
at a potentially quantitative and predictive method, the “first principles” calculation of such
screened interaction parameters is of course highly desirable. Nevertheless, it should be noted
that sometimes it can also be instructive to vary, e.g., U and J within certain limits to better
analyze the underlying physics.

Finally, we also provide the specific form of the DC correction that was used in the DFT+DMFT
calculations discussed in Sec. 4. Generally, an exact definition of Epc[G'] is ill-defined. The
DFT exchange correlation functional is a complicated functional of the total density, that does
not allow to simply separate off the contributions corresponding to the local interaction of the
correlated subspace. Therefore, in practice, heuristic forms are used to account for the DC
correction. A widely used form, also used in the examples discussed in Sec. 4, is based on the
so-called “fully localized limit” [11, 12], which assumes Epc = %N (N—1), where N is the
total number of electrons occupying the correlated subspace on the corresponding site, and U
is the local interaction strength averaged over all orbitals and spins. The corresponding self-

1

: : DC __ dEpc __ _1
energy correction is then defined as 20>, = B = U (N 2)) Omms Where 1, represents

the local density matrix within C. For more details, see, e.g., Ref. [12].

3 Transition metal oxides in a nutshell

In this section, we briefly summarize some basic properties of TM oxides that are important to
better understand the materials-specific examples discussed in the next section. In fact, many
aspects of TM oxides and related TM compounds can be understood from some simple general
considerations about their electronic structure.

The electronic bands around the Fermi level (or around the insulating gap) that govern the low
energy properties of TM oxides are usually dominated by states with strong TM d and O p
orbital character and can be understood to emerge from the heteropolar covalent bonds formed
by the corresponding atomic orbitals. In a somewhat simplified but intuitive picture, this band
formation can be understood as a two-step process. First, the hybridization between atomic TM
d and O p orbitals gives rise to molecular-orbital-like states located around the corresponding
ionic sites, as shown schematically in Fig. 2. Then, the molecular-orbital-like states at differ-
ent sites hybridize to form extended Bloch states, leading to an energetic broadening of the
molecular-orbital-like levels into wider “energy bands”.

The energy difference between the atomic TM d and O p states is called the charge transfer
energy. In most cases, the TM d states are higher in energy than the O p states, corresponding
to a positive charge transfer energy. However, the charge transfer energy generally decreases
from the lighter to the heavier TM cations in the same row of the periodic table, and thus some
nickelates or cuprates can also be characterized as negative charge transfer systems. For a
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Fig. 2: Schematic depiction of the formation of a heteropolar covalent bond between atomic
orbitals with TM d and O p character, leading to “anti-bonding” and “bonding” molecular-
orbital-like states. The depicted orbitals are Wannier functions obtained for SrVOs3 by consider-
ing different energy windows containing the corresponding bands (see Fig. 3 and the description
in the main text).

positive charge transfer energy, the higher-lying molecular-orbital-like states formed from the
hybridization between TM d and O p states have a larger contribution of the TM d atomic or-
bitals and correspond to an anti-bonding linear combination of the two types of atomic orbitals,
while the lower-lying states are dominated by O p contributions and correspond to a bonding
combination.

If the charge transfer energy is large enough compared to the width of the bands that form from
the overlap or “hopping” between the molecular-orbital-like states located at different sites,
then the corresponding bands remain isolated from each other energetically, and can be clearly
assigned to the different orbital characters. Fig. 3(a) shows the example of the cubic perovskite
SrVOs3, with clearly separated groups of bands corresponding, from lower to higher energies,
to a dominant O p, V t5,, and V ¢4 orbital character, respectively (indicated in purple, red,
and green in Fig. 3(a)). Note that typically, if one refers for example to the “Z5, bands” in
SrVO3, then one in fact refers to the group of bands with dominant V ¢,  orbital character that
correspond to the anti-bonding states resulting from the hybridization between atomic V ¢,, and
O p orbitals.

If one now constructs Wannier functions separately from the different groups of bands in
Fig. 3(a), using atomic orbitals with the corresponding dominant orbital character as the ini-
tial trial orbitals, the resulting Wannier functions exactly resemble the molecular-orbital-like
states discussed above for the corresponding group of bands. This is schematically depicted in
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Fig. 3: (a) KS band structure of SrVOs. The dominant orbital characters of the different isolated
groups of bands are indicated by colors, with purple, red, and green corresponding to O p, V
tag, and V e, dominated bands. (b) and (c) indicate typical Wannier functions obtained by either
restricting YV to individual groups of bands or defining VV to span the whole energy window of
V d and O p dominated bands.

Fig. 3(b). For example, for the “t5, bands” in SrVO3, the Wannier functions correspond to anti-
bonding linear combinations of an atomic ?,, orbital centered at the V site and the m-oriented O
p orbitals on the surrounding oxygen ligands. The weight of these “oxygen tails” in the Wannier
functions generally increases with decreasing energy separation from the O p dominated bands,
i.e., they increase with decreasing (positive) charge transfer energy.

Often, DFT+DMFT calculations are performed using only a minimal correlated subspace with
C = W restricted to an isolated group of bands immediately around the Fermi level, e.g., the
o4 bands in SrVOs;. The Wannier orbitals that span the corresponding “frontier” bands are
sometimes (and in the following) referred to as “frontier orbitals”.

Alternatively, one can also use a Wannier space, YV, spanning the whole group of TM d and
O p dominated bands. This usually results in Wannier orbitals that closely resemble atomic
TM d and O p orbitals,? as schematically depicted in Fig. 3(c) for the example of SrVO3. The
correlated subspace, C, is then often defined in terms of only the corresponding TM d-like
Wannier functions.

3Note, however, that Wannier functions in a solid can never strictly be separated in a radial and angular part, as
local angular momentum is not a good quantum number.
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4 Examples

Before discussing three specific examples for the effect of charge self-consistency, we briefly
comment on the case of cubic SrVO3, which is often used as a typical benchmark system to test
new DFT+DMFT implementations or extensions to more advanced features. This is related to
both its highly symmetric cubic crystal structure as well as its simple and prototypical KS band
structure, exhibiting clearly separated groups of bands, as seen in Fig. 3(a). Since the Fermi
level cuts through the group of V t5, bands, consistent with the nominal d' electron configu-
ration of the V4T cation, one often restricts the Wannier space, W, for the DMFT treatment to
only these three V ?5, bands (with C = W), as already discussed in Sec. 3. In this case, the
orbital occupations (summed over the two spin projections) are exactly equal to 1/3, due to the
degeneracy of the three ¢, levels within cubic symmetry combined with the total filling of the
corresponding bands by exactly one electron. Thus, even though a DFT+DMFT calculation
will change, e.g., the features of the spectral function compared to the pure DFT treatment, the
occupations within the correlated subspace will remain fixed to 1/3.* This means that also the
charge density remains identical to the DFT ground state charge density, so that in this case a
one-shot calculation is in fact already charge-self-consistent.

Thus, charge self-consistent calculations become only relevant if the occupations are not fixed
by the specific symmetry of the system and the total electron count within C. For example, if
one extends W to also include the O p-dominated bands at slightly lower energies, and defines
C in terms of V-centered t,,-like Wannier orbitals constructed from all bands within ), then,
even though all three V t,, Wannier orbitals will still have identical occupations due to the cubic
symmetry of the system, the total electron count within C is not fixed any more and electrons
can be redistributed between C and the rest of }V that is not contained in C. This redistribution
can then lead to subtle changes in the charge density.

In the following subsections, we focus on two cases where the electron redistribution is more
pronounced and leads to noticeable differences between the one-shot results and that of a charge
self-consistent DFT+DMFT calculation. All examples employ a definition of the correlated
subspace and of the corresponding basis orbitals such that C =~ )V, and W is isolated from
other groups of bands towards lower energies. Thus, since the energy window spanned by C
and W also includes the Fermi level, the electron count in C is fixed.” The resulting charge re-
distribution within C in these examples is therefore always related to the presence of symmetry-
inequivalent orbitals or sites.

4.1 Orbital polarization in CaVOg3

Our first example is the moderately correlated metal CaVOg3, which is closely related to SrVOs;.
In both materials, the V4t cation exhibits a nominal d' electron configuration, but in contrast

“Here, we are excluding the possibility of a spontaneous symmetry breaking which can always be suppressed
in the calculation by appropriate averaging/symmetrizing over equivalent orbitals.

3In the examples where WV is not strictly identical to C, the (very) small part of WV that is not included in C
always remains completely unoccupied.
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to the perfectly cubic case of SrVOs, the degeneracy of the ¢y, levels in CaVOs is lifted due to
the orthorhombic distortion of the underlying perovskite crystal structure [see Fig. 4(a)]. The
energetic splitting of the ?5, levels leads to a (partial) orbital polarization, which is strongly
affected by the local interaction and also influences the material’s vicinity to a potential Mott
metal-insulator transition. This orbital polarization can be further enhanced in thin films of
CaVOs; epitaxially grown on a suitable substrate. The mismatch of the lattice constant with that
of the substrate material creates a biaxial in-plane strain, which results in a strong additional
tetragonal component to the local crystal field on the V sites. Under tensile strain, i.e., if the in-
plane lattice constant of the substrate is larger than that of the thin film material, this lowers the
energy of the d,, level relative to the other two t,, states. An order-of-magnitude reduction of
the resistivity has indeed been reported for CaVOj thin films grown epitaxially on SrTiOs [13,
14], for which the corresponding lattice mismatch corresponds to a nominal tensile strain of
about 3.5 %.

Fig. 4(c) compares results obtained from charge-self-consistent (CSC) DFT+DMFT calcula-
tions with corresponding “one-shot” (OS) calculations for CaVO3 under 4 % tensile epitaxial
strain as a function of the local inter-orbital Hubbard interaction U. These calculations have
been performed using a basis of three V-centered ¢,,-like “frontier orbitals” (cf. Sec. 3) con-
structed from the isolated group of bands around the Fermi energy with dominant V ¢,, character
[see Fig. 4(b)].

In both one-shot and charge self-consistent calculations, the system is metallic for small U, indi-
cated by the nonzero spectral weight around zero frequency, evaluated as A(0)=— gTr[G (8/2)],
and shown in the lower panel of Fig. 4(c). With increasing U, the system then exhibits a tran-
sition to an insulating state, indicated by A(0) ~ 0. The critical U for this metal-insulator
transition is 0.3 eV larger in the charge self-consistent calculation compared to the one-shot
result. This increase in the critical U can be related to a strong suppression of the orbital polar-
ization, visible in the upper panel of Fig. 4(c). In the one-shot case, the system becomes nearly
completely polarized in the insulating state, with one of the three ¢, orbitals nearly completely
filled and the other two nearly completely empty. In the charge self-consistent calculation, the
orbital polarization is much weaker, even though there is still a clear preferential occupation
of one orbital compared to the other two. The partial suppression of orbital polarization in the
charge self-consistent case can be understood from the fact that a full occupation of one i,
orbital leads to a strong asymmetry in the charge distribution around the V cation, which then
increases the Hartree potential for that particular ¢, orbital relative to the other two. This, in
turn, will partially counteract the strain-related lowering of the corresponding crystal-field level
in the KS potential, and thus reduce the orbital polarization relative to the one-shot result.
Even though the difference in the critical U for the metal-insulator transition between the one-
shot and charge self-consistent calculation is not very large, the strong reduction of the orbital
polarization can be important for an accurate description of, e.g., spectral properties. Further-
more, this example already highlights a general theme that will also be observed in the next
example, i.e., that if the local interaction in DMFT tends to “polarize” the system, either locally
between orbitals or also in between different sites, the resulting asymmetric or inhomogeneous
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Fig. 4: (a) Orthorhombically distorted perovskite structure of CaVOs3, exhibiting small col-
lective tilts/rotations of the oxygen octahedra around the cubic axes. V atoms and their sur-
rounding coordination octahedra are shown in orange, while O (Ca) atoms are shown in red
(blue). (b) KS density of states (DOS) of CaVOs. The total DOS as well as projections on
selected atomic orbitals are shown. (c) Spin-summed orbital occupations of the three V iy,
frontier orbitals (upper panel), with different orbitals indicated by different line-styles, and zero
frequency spectral weight (lower panel) in CaVOs under 4 % tensile strain obtained from dif-
ferent DFT+DMFT calculations as a function of the Hubbard U. Label QE (VASP) refers
to an implementation based on Quantum Espresso (the Vienna Ab-Initio Simulation Package)
in combination with TRIQS/solid_dmft [15], while CSC (OS) refers to a charge self-consistent
(one-shot) calculation. Subfigure (D) is taken from Ref. [5]. Subfigure (c) courtesy of S. Beck.

charge distribution is usually disfavored by the strong Hartree interaction included in the KS
potential. Consequently, the corresponding polarization is reduced in a charge self-consistent
calculation compared to the one-shot case.

Fig. 4(c) also compares two different implementations of the DFT+DMFT self-consistency cy-
cle, one using the “Vienna Ab-Initio Simulation Package” (VASP) and a correlated subspace
basis constructed from projection to localized orbitals (PLO) [16], the other based on Quan-
tum ESPRESSO and Wannier orbitals obtained with the Wannier90 code [17]. One can see
that the two implementations give nearly identical results, with small differences visible mainly
for the orbital occupations in the one-shot case. These small differences can be assigned to the
small differences in the definition of the corresponding local orbitals, but the overall quantitative
agreement between the two cases is indeed very good.
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Fig. 5: Schematic depiction of the octahedral breathing mode distortion of the perovskite
structure observed in CaFeOs and the rare earth nickelates. The oxygen octahedra around
the more (less) occupied sites increase (decrease) in volume, resulting in a three-dimensional
checkerboard-like spatial arrangement.

4.2 Potential charge disproportionation in SrCrQO;

In the previous example, a charge redistribution occurs between different orbitals centered on
the same site. The example discussed in this section involves a charge redistribution between
different sites. This is relevant for materials exhibiting charge ordering or charge dispropor-
tionation. Here, we use the former term for a situation where a TM cation has a non-integer
average nominal valence, such as, e.g., in magnetite, Fe;O,, or in the compositionally doped
manganites, (R,A)MnOs, where R is a trivalent rare-earth cation and A a divalent alkaline-earth
cation. In contrast, we use the term charge disproportionation to refer to situations, where a
TM cation has an integer nominal valence, but the corresponding valence state is unfavorable,
and can disproportionate into states with higher and lower valence than the average one. One
example for a TM oxide exhibiting such charge disproportionation is CaFeOg3 [18], where the
nominal Fe** cation disproportionates into a combination of Fe*> and Fe®*, corresponding to a
change in the electron configuration according to 2d* — d° + d>. Another example is the series
of perovskite rare-earth nickelates, ZN1O3, where R again indicates a trivalent rare earth cation
including also Y and Lu [19]. In this series, the nominal Ni** cation disproportionates into Ni**
and Ni**, corresponding to a change in the electron configuration according to 2d” — d® + d.

In both CaFeOj3 and the rare earth nickelates, the charge disproportionation occurs below a tran-
sition temperature and is accompanied by a metal-insulator transition and a symmetry reduction
related to the ordering of the inequivalent disproportionated TM cations on the B sites of the
underlying perovskite structure. Furthermore, the disproportionation also couples to a struc-
tural distortion that can be understood as a “breathing”, i.e., a volume change, of the oxygen
octahedra surrounding the inequivalent TM cations, with the octahedra of the more occupied
TM cations increasing in volume and the ones corresponding to the less occupied TM cations
decreasing (see Fig. 5).

The picture of a “charge” disproportionation in these systems has also been questioned, based on
the observation that the actual charge differences, defined, e.g., by integrating the DFT charge
density up to some radius within a sphere around the TM sites, is much smaller than the nominal
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difference of two electrons. It has therefore been suggested that an interpretation in terms of
ligand holes could be more appropriate, where the electron configuration around, e.g., the Ni
site in RNiOj3 in the undisproportionated state is better described as d®L, where L represents
a hole distributed over the surrounding oxygen ligands. The disproportionation is then inter-
preted as 2d8L — d® + d®L? with two ligand holes localizing around one of the inequivalent
Ni sites. Since the ligand holes are spatially distributed over the surrounding octahedron, the
corresponding change in the actual charge density is minimal [20,21].

Here, we take the viewpoint that, at least in the present context, local charges within a solid
are best defined in terms of occupations of suitably defined atom-centered orbitals or Wannier
functions. In this case, the ligand hole and “d-only” pictures of electronic disproportionation
are just two sides of the same coin, which simply correspond to using different basis sets to
describe the same phenomenon. Specifically, a description in terms of a minimal correlated
subspace consisting of TM-centered frontier Wannier functions results in orbital occupations
that closely resemble the “d-only” picture of charge disproportionation in terms of the formal
valence states [22,23]. On the other hand, a correlated subspace defined in terms of more lo-
calized atomic-orbital-like Wannier functions spanning the whole energy window of the TM
d and O p dominated bands corresponds more closely to the ligand-hole picture. Since in the
following, we analyze DFT+DMFT calculations that employ a frontier orbital basis, we con-
sequently discuss the corresponding results in terms of the d-only picture based on the formal
charge states.

Getting back to our example for charge self-consistent DFT+DMFT calculations, we note that
in both examples mentioned so far, the disproportionation takes place in the e, subshell of the
TM cation. In the case of the nickelates, the ?,, states always remain completely filled and the
charge disproportionation can also be described as 26; — 63 + eg. Similarly, in CaFeOs the
Fe always remains in a high-spin state where the 5, orbitals are half-filled with three electrons
with the same spin character, and the occupation of the e, states changes in the same way as in
the nickelates.

It is therefore interesting to ask whether charge disproportionation can also occur purely within
the ¢y, subshell. Indeed, model studies considering a generic three-band Hubbard model with
an average filling of two electrons per site have found a disproportionated insulating phase in a
regime where U—3J < 0, i.e., where the local Hubbard interaction is strongly screened while
the Hund’s interaction remains relatively strong [24,25]. In this regime, the Hund’s interaction
dominates over the Hubbard repulsion and it becomes favorable to accumulate a maximum
number of electrons with the same spin on the same site, resulting in a charge disproportionation
according to 3d*> — 2d® + d°. The disproportion is thus slightly more complex compared to
CaFeOs and the nickelates, since the number of d° sites is twice the number of empty sites.
Potential candidate materials to observe this physics, are the perovskite chromates ACrOs;,
where A can be Ca, Sr, or Pb, and the formal valence of the Cr*t cation corresponds to a d?
configuration with two electrons in the ¢, subshell. In fact, a possible charge disproportionation
of the Cr cation has been reported for PbCrOg [26,27], but other reports point more towards a
disproportionation of the Pb cations into Pb?>* and Pb**, with all Cr cations in their most fa-
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Fig. 6: (a) Spatial arrangement of the charge disproportionated sites assumed in the
DFT+DMFT calculations for SrCrOs, corresponding of a layering along the pseudo-cubic
[111] direction, whereby two Cr3* layers (d° sites) periodically alternate with one Cr%* layer
(d° sites), indicated by blue and purple octahedra, respectively. (b) Structural distortion related
to the charge disproportionation. The blue Cr*" octahedra expand and distort, while the Cr%"
octahedra shrink but essentially keep their perfect octahedral shape. (c) KS bandstructure (blue
lines) of cubic SrCrQOj in the energy region around the Fermi level. The orange lines represent
the dispersion recalculated from the frontier Wannier functions spanning the correlated Cr to
subspace. All subfigures are taken from Ref. [35].

vorable Cr** oxidation state [28]. Here, we therefore discuss the simpler case of SrCrO; where
the A site cation is definitely divalent, and for which a simple ideal cubic perovskite structure
has been reported at ambient conditions. Nevertheless, conflicting experimental reports still
exist on the metallic or insulating character of SrCrOj3, and on the presence of magnetic order
at lower temperatures, see, e.g., Refs. [29-32]. Recently, a potential metal-insulator transition
has been reported in thin films of SrCrO3 under tensile strain conditions [33]. While the tran-
sition from metallic to insulating behavior under tensile strain can in principle be explained by
the emergence of orbital order and a Jahn-Teller distortion [34], a charge disproportionation
of the Cr cations could provide an alternative scenario, which has been explored using charge
self-consistent DFT+DMEFT [35].

The spatial arrangement of potential d* and d° sites in these DFT+DMFT calculations is de-
picted in Fig. 6(a). It corresponds to a periodic layering along the [111] direction of the under-
lying cubic perovskite structure. Two potential d° layers are followed by one potential d° layer.
Here, the term “potential” simply means that the two effective impurity problems corresponding
to the potential d® and d° sites are solved independently (albeit of course coupled through the
usual self-consistency condition), and thus allow for a spontaneous electronic symmetry break-
ing between these otherwise crystallographically equivalent sites. Fig. 6(c) shows the KS band
structure of cubic SrCrOj in the corresponding supercell, with the correlated Cr 5, frontier sub-
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Fig. 7: Spectral weight around zero frequency, A(0), as function of interaction parameters
U and J, obtained from different DFT+DMFT one-shot calculations. The left phase diagram
corresponds to using DFT occupations to evaluate the DC correction (which in the present
case is equivalent to using no DC correction). For the phase diagram on the right, DMFT
occupations are used for the DC correction. The regions corresponding to the homogeneous
Mott insulator and the charge-disproportionated insulator are indicated. Figure is adapted
from Ref. [35] courtesy of A. Carta.

space indicated by the band dispersion that was recalculated from the corresponding Wannier
functions. One can see that these bands are only minimally entangled with the Cr e, bands at
higher energies, and the essentially perfect match with the underlying KS bands indicates that
C~W.

We first discuss the results of the corresponding one-shot calculations shown in Fig. 7, where
the spectral weight around zero frequency, A(0), is plotted as function of the interaction pa-
rameters U and J. Here, one has to face an ambiguity of such one-shot calculations, which is
whether the total site occupations used for the DC correction are evaluated from the initial DFT
occupations or from the occupations obtained after the DMFT treatment of the local interaction.
In the present case, these occupations differ substantially in the charge-disproportionated region
of the U-.J phase diagram. Specifically, the “DFT occupations” are always identical for all Cr
sites, since no charge disproportionation occurs in the DFT calculation and thus all sites remain
symmetry-equivalent. On the other hand, in the region of the phase diagram where U—3.J < 0
and charge disproportionation is obtained within DMFT, the difference in the “DMFT occupa-
tions” between the nominal d and d° sites is typically An > 2.6. This is rather close to the
nominal charge difference of 3 electrons, exemplifying that the frontier orbital treatment indeed
maps nearly perfectly on the d-only picture of charge disproportionation based on the formal
valence states.

Using DFT occupations to evaluate the DC correction is in this case equivalent to not con-
sidering any DC correction at all. Since all Cr sites are equally occupied within DFT, the DC
correction results in identical shifts of the local potential of each site, which, in the present fron-
tier orbital treatment with C = V), is simply absorbed by a rigid shift of the chemical potential.
The U-J phase diagram on the left side of Fig. 7, labeled “no DC correction”, corresponds to
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that case, and is essentially identical to the corresponding phase diagram of a generic three-
band Hubbard model [24]. There are two distinct insulating phase indicated by A(0) ~ 0. The
conventional Mott-insulating phase, where all Cr sites are equally occupied by two electrons,
appears at large U = 4.5eV. The critical U for the transition into this Mott-insulating phase
decreases with J for J < 0.5¢eV, then increases with J for larger J (cf. Ref. [10]). In the region
with U—3J < 0, the charge disproportionated phase appears (which was also termed “Hund’s
insulator” in Ref. [24]), where two of the Cr sites are occupied by nearly three electrons each
and one Cr site is nearly empty. The two insulating phases are separated by a metallic region,
which extends along the line U = 3. even to very large U. This is the region of a strongly
correlated “Hund’s metal” [24, 10].

Using DMFT occupations to evaluate the DC correction leads to drastic changes in the corre-
sponding phase diagram. While the overall topology remains the same as before, with a metallic
region separating two distinct insulating regions, the region of the charge-disproportionated in-
sulator now appears at significantly smaller ./, and even in regions where U—3.J > 0 (note
the different scales of the J axes of the two phase diagrams in Fig. 7). This reflects the fact
that now, as soon as a small difference in occupation of the different sites occurs in the DMFT
self-consistency loop, the DC correction further lowers the local potential at the more occupied
sites relative to that of the less occupied sites, and thus strongly reinforces the charge dispro-
portionation.

As mentioned, the choice of whether to use DFT or DMFT occupations to evaluate the DC
correction is ambiguous in a one-shot calculation. This ambiguity is of course a result of the
missing charge self-consistency, and the observation that the two different possible choices lead
to rather different results of course indicates a strong redistribution of electrons, which in the
end calls for a charge self-consistent calculation. On the other hand, in a charge self-consistent
calculation the only physically meaningful occupations are the DMFT occupations. These are
also the occupations that determine the charge density used to evaluate the KS potential, and
thus there is no ambiguity on the choice of occupations for the DC correction in the charge
self-consistent case.

If one calculates an analogous phase diagram to the ones shown in Fig. 7 from charge self-
consistent calculations, one finds that the charge-disproportionated insulating region in fact
completely disappears from the phase diagram. While the Mott-insulating region, where the
DMFT occupations are identical to the DFT ones, remains unaffected by the charge self-
consistency, the metallic region now fills up the entire rest of the phase diagram, also in the
region where U—3J < 0. Thus, similar to the previous example of CaVOj3, where the or-
bital polarization is strongly suppressed by the charge self-consistency, the “site polarization”
in SrCrQgs is also suppressed, even to an extent that it completely disappears. The strong charge
accumulation around the Cr3* sites after the first DFT+DMFT iteration step (which corresponds
to a one-shot calculation using DMFT occupations for the DC correction) leads to a strong in-
crease of the local Hartree potential in the second DFT step, which then strongly opposes the
charge disproportionation and restores the homogeneous metallic solution with identical occu-
pation on all sites.



Charge Self-Consistency 6.23

Fig. 8: Total energy change, (a) and (c), as well as site polarization, (b) and (d), defined
as difference in total occupation of the potential d* and d° sites, obtained from charge self-
consistent DFT+DMFT calculations for SrCrOj3 as function of the structural breathing mode
distortion depicted in Fig. 6(b). The amplitude of the distortion is measured in terms of the
change in Cr-O bond length of the smaller octahedra relative to the undistorted case. Panels
(a) and (b) are calculated using the standard form of the DC correction, U = 2.7 €V, and
different values of J. Panels (c) and (d) are calculated using U = 2.7eV, J = 0.42 eV, and the
DC correction was scaled by fpc. All subfigures are taken from Ref. [35].

The charge self-consistent calculation thus indicates that SrCrO3 does not exhibit any electronic
instability towards spontaneous charge disproportionation.® However, as noted previously, in
materials such as CaFeOj3 and the rare earth nickelates, the charge disproportionation always ap-
pears together with a structural distortion corresponding to a breathing of the oxygen octahedra
around the TM cations (cf. Fig. 5). This raises the question of whether charge disproportiona-
tion in SrCrOj could also be stabilized by the coupling to an appropriate structural distortion.

An octahedral “breathing mode” compatible with the considered spatial arrangement of poten-
tial d> and d° sites is depicted in Fig. 6(b). Due to the connectivity of the octahedra and the
fact that two layers of potential d* sites are next to each other, the volume expansion leads to
a further distortion of these d* octahedra, corresponding to three longer and three shorter Cr3*-
O bond distances. On the other hand, the octahedra surrounding the potential d° sites can in
principle keep their perfect octahedral shape.

Fig. 8 summarizes results of charge self-consistent DFT+DMFT calculations where the ampli-

6Since the corresponding region completely disappears from the charge self-consistent phase diagram, we do
not even have to face the question which values of U and J would best describe real SrCrOg.
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tude of this breathing mode distortion has been varied and both the total energy and the “site
polarization, i.e., the difference in total occupation between the nominal d? and d° sites have
been monitored as function of the distortion amplitude. These calculations have been performed
for U = 2.7eV, which is the value that has been calculated for ¢, frontier orbitals in SrCrO;
using the constrained random phase approximation (cRPA) in Ref. [36]. Fig. 8(a) and (b) also
shows the effect of varying the strength of the Hund’s coupling J, with J = 0.42eV being
the calculated cRPA value from Ref. [36]. Note that these cRPA values of U = 2.7eV and
J = 0.42eV would put SrCrOs; in the charge disproportionated insulating region according to
the one-shot phase diagram on the right side of Fig. 7. On the other hand, the results from the
charge self-consistent calculations shown in Fig. 8 show that, even for significantly increased
J, the total energy increases essentially quadratically with the structural distortion amplitude,
showing no sign of a potential instability towards a distorted charge disproportionated state.
This is also consistent with the behavior of the site polarization, which just exhibits an essen-
tially linear response to the structural distortion that breaks the symmetry between the formerly
equivalent Cr sites, with no sign of a potential electronic instability.

As discussed above, the DC correction can in principle strongly support a charge disproportion-
ation, by further lowering the local potential of the more occupied sites relative to that of the less
occupied sites. On the other hand, the resulting charge accumulation then strongly increases the
local Hartree potential if the KS potential is recalculated from the DMFT occupations. Thus,
whether charge disproportionation emerges or not, appears to be determined by the subtle bal-
ance between these two opposing tendencies. Thereby, one should remember that, as briefly
discussed in Sec. 2.3, the DC correction as such is not defined exactly, and that commonly
used expressions are mostly based on heuristic arguments and practical experience in their ap-
plication to different materials systems. In fact, several cases have been identified, where the
commonly used expressions for the DC correction do not seem to be completely appropriate,
and a scaling of the DC correction is necessary to obtain good agreement with experimental
observations [37-39].

Fig. 8(c) and (d) therefore show results of additional charge self-consistent calculations, where
the DC correction is scaled by a factor fpc > 1, while U and J are kept fixed to the cRPA
values. It can be seen that for fpc = 1.35, the simple linear response of the site polarization
to the structural distortion is significantly altered, and a second minimum of the total energy
appears for nonzero distortion. In this case, the site polarization exhibits a strong nonlinear
increase for distortion amplitudes in the range 1-2 %, to values above 2 electrons, and then
saturates for larger distortion to a value slightly below 3. The strong nonlinear increase of
the site polarization is accompanied by a transition from metallic to insulating behavior in the
spectral functions (not shown). Thus, scaling the DC correction by 35 % puts the system into
a regime where the coupling between the structural distortion and the electronic instability
stabilizes the charge disproportionated insulating state. For larger scaling, fpc > 1.5, the
electronic charge disproportionation even occurs again for zero structural distortion (as in the
one-shot case), but the minimum of the total energy for nonzero distortion amplitude indicates
that this will also stabilize a significant structural distortion.
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So what can we finally learn from this example of potential charge disproportionation in SrCrO3?
First, it demonstrates nicely and instructively the effect of charge self-consistency, in particu-
lar the potential interplay between the DC correction and the change in the Hartree part of the
KS potential due to the electron redistribution within DMFT. In the present case, this leads
to a clear and rather drastic difference between the charge self-consistent calculation and the
corresponding one-shot result. To some extent, the example also exposes the limitations of the
current quantitative predictive capabilities of the DFT+DMFT approach, in this case related
mostly to the conceptual difficulties in accurately defining the DC correction. On the other
hand, even in view of this uncertainty, a required scaling of the DC correction by 35 % relative
to the conventional expression appears relatively large, and thus an emergence of charge dispro-
portionation in bulk stoichiometric SrCrOs is probably unlikely. Nevertheless, the calculations
clearly show that SrCrOj is in fact on the verge of several electronic instabilities (also consid-
ering the possibility of orbital order and an accompanying Jahn-Teller distortion explored in
Ref. [34]). This observation can provide a possible explanation for the partly conflicting ex-
perimental reports regarding its electronic and magnetic properties [29-32], and suggests the
possibility to potentially tune SrCrOjs into different insulating ground states by applying strain,
substitutional doping, or nano-structuring.

5 Summary and conclusions

In these lecture notes, we have addressed the effect of charge self-consistency in DFT+DMFT
calculations, with a special emphasis on TM oxides and related compounds. We have mostly
focussed on the practical implementation of the different steps in the iterative computational
procedure, summarized by the schematic workflow shown in Fig. 1, but we have also mentioned
that the method can be derived rigorously as a stationary solution of a specific approximation
to the Gibbs free energy functional in terms of the charge density and the local Green function
corresponding to the correlated subspace.

An important aspect of the charge self-consistent procedure is a clear and transparent definition
of the local orbitals that span the correlated subspace, which allows to downfold, respectively
upfold, various quantities from the KS Bloch basis to the correlated subspace and vice versa.
The effect of the DMFT treatment of the local interaction within the correlated subspace is then
incorporated in the charge density via the upfolded DMFT occupations defined in Eq. (12).
Thus, if these occupations change significantly compared to the initial DFT occupations, a
charge self-consistent calculation is generally required.

The two examples discussed in Sec. 4 demonstrate that this is particular relevant in cases
where electrons are redistributed within the correlated subspace, either between different non-
degenerate orbitals on the same site or between different symmetry-inequivalent sites. This can
then result in a strong competition between the tendency of the local correlations to favor an in-
homogeneous distribution of electrons and the electrostatic Hartree interaction favoring a more
homogeneous distribution.
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All specific examples discussed in these lecture notes were based on a definition of the cor-
related subspace in terms of more or less isolated frontier bands, such that electrons can only
be redistributed within the correlated subspace. Due to the significantly larger computational
effort, charge self-consistent calculations based on a wider energy window, where )V includes
also, e.g., the bands with dominant O p character, and C includes all five d orbitals on the TM
site, are sparse. In this case, an electron redistribution can also occur between C and the uncor-
related part of W, and the DC correction also affects the energy difference between the TM d
orbitals and the ligand states. In fact, it has been reported that in several such cases a similar
scaling of the DC correction as described in Sec. 4.2 (albeit with fpc < 1) is required to obtain
results that are consistent with experimental observations [38,39]. However, a very recent re-
port indicates that this might also be related to the fact that typically only the TM d orbitals are
included in C, while the ligand states remain uncorrected with respect to their KS energies ob-
tained on the DFT level (using approximate semi-local exchange correlation functionals) [40].
Furthermore (to the best of the author’s knowledge), no systematic studies on the effect of the
charge density update (and its potential interplay with the effect of the DC correction) have
been performed for DFT+DMFT calculations using a wide energy window, in particular not for
systems involving a charge redistribution both within C and in between C and W \ C. Thus,
there is still much to be learned on the effect of charge self-consistency and its importance to
specific cases.
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