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1 Idea of reference systems

In this lecture we give an introduction to the theoretical description of correlated electron sys-
tems within a path integral approach. First, numerically exact calculations of interacting path
integrals via continuous-time Quantum Monte Carlo methods (QMC) [1] are revisited. Next,
the strong-coupling path-integral Dual-Fermion (DF) expansion around optimally chosen ref-
erence system is presented. Finally, the response of the single-band, hole doped t-t′ Hubbard
model to an external superconducting d-wave field is discussed.

The most well known reference system scheme in quantum material science is related to the
celebrated Density Functional Theory (DFT) and their Local Density Approximation (LDA). In
this case a homogeneous electron gas with constant external potential and the same Coulomb
electron-electron interactions have been solved (see Fig. 1), and this results served as the ref-
erence for inhomogeneous electron crystals via a simple LDA ansatz. Such a reference system
is exactly solvable via a diffusion quantum Monte Carlo scheme for the ground state energy
as a function of the electron density [2]. On other hand, the Dynamical Mean-Field Theory
(DMFT) [3] for strongly interacting fermionic systems is based on the self-consistent solutions
of an effective impurity reference system (Fig. 1). For realistic multi-orbital systems such a
scheme uses a fermionic impurity bath with frequency dependent hybridization function ∆ω for
the correlated part of electrons described by the family of DFT+DMFT approaches [4]. The
DMFT scheme becomes exact in the limit of infinite lattice dimension [5].

At finite lattice dimension one can start from the DMFT reference system and use different
perturbation schemes for non-local correlation effects [3]. The frequency dependent effective
impurity DMFT problem nowadays can be efficiently solved within the continuous time quan-
tum Monte Carlo (CT-QMC) scheme [1]. Therefore the perturbation theory needs to be for-
mulated within the action path integral formalism. We discuss here a general way to include
correlations beyond the interacting reference system [6] which are based on the strong cou-
pling dual-fermion path-integral formalism [7]. In the case of additional non-local interactions,
the so-called GW+DMFT scheme and impurity reference systems with fermionic and bosonic
bathes can be used and so-called dual-boson approach for non-local correlations [6].

For DMFT an effective impurity model, designed to the problem of correlated materials, serves
as the reference system, see Fig. 1. Since the zeroth order of such a non-local perturbative ex-
pansion coincides with the DMFT problem, we already have an interacting system from the be-
ginning. Moreover, the perturbation is momentum and frequency dependent, so we are forced to
replace the Hamiltonian approach by an actions path-integral formalism. Note that the fermion
path integral can be used also to formulate the DMFT problem [3, 7]. The dual-fermion ap-
proach is not necessarily bound to a specific starting point and can also be used for correlated
lattice reference system.
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Fig. 1: Schematic representation of reference systems in many-body approaches to lattice-
fermion models: (i) Density-functional theory (DFT) with the interacting homogeneous electron
gas as a reference system, defined by a constant external potential µ. (ii) Dynamical mean-field
theory (DMFT) with an effective impurity problem as a reference system, defined by a fermionic
bath with hybridization function ∆. (iii) GW+DMFT with a correlated atom in a fermionic (∆)
and bosonic (Λ) bathes describes effects of frequency-dependent screened long-range Coulomb
(V ) interactions.

2 Path integral for correlated lattice model

Let us consider a general interacting lattice fermion model in d-dimensions described by fol-
lowing Hamiltonian Ĥ = Ĥ0 + V̂int in second quantization form

Ĥ =
∑
12

t12 ĉ
†
1ĉ2 +

1

2

∑
1234

V1234 ĉ
†
1ĉ
†
2ĉ4ĉ3 . (1)

In order to keep the notation simple, it is useful to introduce a combined index for the orthonor-
mal Wannier basis set: |1〉 ≡ |r,m, σ〉 with site r, orbital m and spin σ. The one electron hop-
ping matrix elements reads t12 = 〈1|Ĥ0|2〉 and general interaction tensor is V1234 = 〈12|V̂int|34〉.
For multiorbital systems it is useful to introduce the fully antisymmetric interactions vertex:
U1234 = V1234 − V1243 with an additional factor 1

2
in the last sum of Eq. (1). We use atomic

units with {m, e, ~, kB} = 1. In the path-integral formalism (see Appendix A), the equilibrium
partition function of a general fermionic lattice system with Hamiltonian Eq. (1) and inverse
temperature β = 1/T can be written in the form of a functional integral in d+1 dimensions
over Grassmann variables [c∗, c] (corresponding to the original operators [ĉ†, ĉ])

Z =

∫
D[c∗, c] e−S[c

∗,c] (2)

with Euclidean action for imaginary time τ = it

S[c∗, c] = −
∑
1,2

c∗1 G−112 c2 +
1

4

∑
1234

U1234 c
∗
1c
∗
2c4c3 , (3)
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with inverse bare Green function matrix

G−112 = −∂τ − t12 , (4)

where the Grassmann variable index means |1〉 ≡ |r,m, σ, τ〉 and following the definition of
“summation” over continuous imaginary time τ in the [0, β] interval

∑
1

{· · · } ≡
∑
i,m,σ

∫ β

0

dτ {· · · } . (5)

All single-particle effects in solids can be described with the help of the one-electron Green
function for interacting fermion systems with Hamiltonian in Eq. (1), which may be represented
as the following path-integral over action in Eq. (3)

G12 = −〈c1c∗2〉S = − 1

Z

∫
D[c∗, c] c1c

∗
2 e
−S[c∗,c] . (6)

Note, that in the functional integral of Eq. (6) the anti-commuting Grassmann variables are
automatically “ordering” in the imaginary times and one does not need to introduce the “time-
ordering” operator in the definition of Green function.
We will discuss in this chapter different methods for numerical “path-integrations” of Eq. (6)
which are all related to different flavors of the continuous time (CT) quantum Monte Carlo
(QMC) scheme. The first approach, namely Diagrammatic Monte Carlo (DiagMC) was devel-
oped for bosonic systems [8] and is related to a QMC-summation of Feynman diagrams with an
important sampling strategy. For fermionic systems two successful versions of CT-QMC exist
and are related with the interaction expansion (CT-INT) [9] and the hybridization expansion
(CT-HYB) family of impurity solvers [1]. Finally, the lattice version of the CT-INT scheme for
the one-particle irreducible self-energy with only connected Feynman diagrams, the so called
CDet approach was developed recently [10].
The main problem with calculations of the path integral in Eq. (6) is related with the fact that
the only known answers refer to non-interacting system (see Appendix A). The interaction
expansion (CT-INT) continuous-time quantum Monte Carlo algorithm for fermions is based on
a formal series expansion for the partition function (3) in the U -terms of the action in Eq. (3) [9].
In a schematic form we have

Z =

∫
D[c∗, c] e−S0[c∗,c]

∞∑
k=0

∑
1234

(−1)k

4kk!

∫ β

0

dτ1 · · · dτk
(
U1234 c

∗
1c
∗
2c4c3

)k (7)

where S0 is the Gaussian part of the action (3) related with the bare Green function G12. In
this case we can integrate out the fermionic path integral in Eq. (7) for each k-th terms and get
a k×k determinant of bare Green functions of two spin-projections of Gσ in the paramagnetic
state (the factor k! is cancelled for new time integration area)

Z = Z0

∞∑
k=0

∑
1234

(
−1

2
U1234

)k∫ β

0

dτ1 · · ·
∫ β

τk−1

dτk detG↑k(31) ∗ detG↓k(42) ≡
∑
C

s(C)W (C), (8)
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where the k×k matrix of bare Green function is defined as

Ĝk =


G11 G12 · · · G1k
G21 G22 · · · G2k

...
... . . . ...

Gk1 Gk2 · · · Gkk

 , (9)

and the indices (31) and (42) in Eq. (8) just indicates how pairs of space-orbital-time indices
are connected to the corresponding indices of the interaction vertex U1234 and is “repeated” k-
times to couple Ĝ↑k and Ĝ↓k matrices to all k-vertices: (U1234)

k. In order to overcome a trivial
sign problem related with the factor (−U)k one uses a particle-hole transformation related with
so-called α-shift [9]. The CT-INT scheme is performed by Monte Carlo importance sampling
in the space C of k×k fermionic determinants with the probability defined by absolute value
of the full expression in Eq. (7) under sum and integral. We also introduce the “sign” s(C) of
the product of two determinants which is not always positive. This is the reason for the so-
called QMC fermionic sign problem which plays an important role in all quantum Monte Carlo
simulations. One can rewrite Eq. (7) as Z =

〈
s(C)

〉
MC

with the average over Monte Carlo runs
with corresponding probabilities. Note, that for a half-filled particle-hole symmetric Hubbard-
like model the product of two fermionic determinants is always positive and there is no sign
problem. The probability to change from k-th to k+1-th order in the Metropolis algorithm is
related with ratio of the fermionic determinants [9]

P (k → k+1) = min

(
1,
βU

k+1

∏
σ

detGσk+1

detGσk

)
. (10)

The optimal order of k-perturbation, which corresponds to the maximum of the distribution
function of the fermionic determinants size for a cluster of N -sites is of the order kopt ∼
βNU [9]. We can see that for finite fermionic system at non-zero temperature (β 6= ∞) the
CT-INT “perturbation” k-series is convergent (Fig. 2).

The simplest way to find the expressions for the Green function and other correlation functions
uses functional derivatives of the action Eq. (3) in an external Grassmann fields (J∗, J)

S[J∗, J ] = S[c∗, c] +
∑
i

(c∗iJi + J∗i ci ) . (11)

In this case we have:

Gij = −〈cic∗j〉S =
1

Z

δ2S[J∗, J ]

δJ∗i δJj

∣∣∣∣
J∗=J=0

. (12)

Using Eq. (8) we can write the Green function schematically as

Gσ
ij =

1

Z

〈
s(C) detGσk+(ij)/ detGσk

〉
kMC

, (13)
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Fig. 2: A random walk in the space of fermionic determinants Zk according to the perturba-
tion series expansion Eq.(8) and an example of the histogram for the perturbation order Zk
in Eq.(10). For single-particle properties it is enough to use only k 7→ k±1 moves. For two-
particle properties it is useful to include also k 7→ k±2 moves.

where Ĝk+(ij) is the (k+1)×(k+1) matrix

Ĝk+(ij) =


G11 G12 · · · G1k G1j
G21 G22 · · · G2k G2j

...
... . . . ...

...
Gk1 Gk2 · · · Gkk Gkj
Gi1 Gi2 · · · Gik Gij

 , (14)

and Monte Carlo just averages over the k-space of fermionic determinants. The ratio of the two
determinants in Eq. (13) we can calculate exactly [9] and the final CT-INT expression reads
(skip the same index σ)

Gij = Gij −
1

Z
Gii′ ∗

〈
s(C)

[
G−1k

]
i′j′

〉
kMC

∗ Gj′j , (15)

The CT-INT scheme gives a very stable and accurate results for the Green function for small
clusters, but for bigger systems the average size of the determinants in Eq. (13) becomes pro-
hibitively large. Note that detGσk together with the interaction vertices Uk represents k! Feyn-
man diagrams both connected and disconnected. It is known from the “linked cluster theo-
rem” [11] that the disconnected diagrams are exactly cancelled with the denominator Z. There-
fore, the most efficient way to obtain the Green function is related with a lattice diagrammatic
Monte Carlo scheme within the connected determinants (CDet) approach [10]. The main idea
of the CDet method is related with the fact that one can iteratively subtract all non-connected
diagrams during the Monte Carlo move in the space of fermionic determinants. These dis-
connected Feynman diagrams can be represented as subset S(C of connected diagrams of the
lower order times all remaining diagrams. We can represent schematically the Green function
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Fig. 3: Contribution of different perturbation orders to the imaginary part of the self-energy
Σ(k, ω0) =

∑
nΣn(k, ω0) for k = (π, 0), β = 5, t′/t = −0.3, N = 0.85 with increasing

interaction strength U in the 64×64 Hubbard lattice within the CDet scheme [12].

calculations within a CDet Monte Carlo step in the space of C configuration as

G(C) = detG(C)−
∑
S(C

G(S) detG
(
C\S

)
. (16)

This is the most “time-consuming” procedure to get rid of all disconnected diagrams for the
given k-order of determinants using all smaller rank determinants on the right-hand side of
Eq. (16). The great progress of the CDet approach compared with DiagMC allowed to calcu-
late up to 12-th order in the Uk perturbation series in Eq. (8) for the Hubbard model for very
large systems in the thermodynamic limit. It is also possible to formulate iterative series of
connected Feynman diagram directly for a self-energy similar to Eq. (16), which reduces the
computational cost for such one-particle irreducible schemes. Moreover, the sign-problem in
lattice QMC turns to a “sign-blessing” which can help in averaging to zero all higher diagram-
matic contributions that are not calculated in the CDet scheme [10]. Investigations of pseudogap
phase for a one-band Hubbard model of doped cuprates [12] show the high accuracy of such
path-integral scheme. For young researchers there is the very useful possibility to test the CDet
code included in the Supplementary Materials of [12].
The main problem of the CDet scheme is the poor convergence of series Σ =

∑
k U

kΣk which
for large U>5t start to diverge (see Fig. 3) and one needs to use a resummation scheme from
conformal field theory. Nevertheless, for the part of phase space (U, β, n) where the CDet
scheme is converged (e.g. for large temperature, β=5), this method can be considerd as numer-
ically exact solution of correlated lattice problem. As example of CDet results [12] we show in
Fig. 4 the spectral function of Hubbard model for a large system of of 64×64 sites with strong
interactions. One can see the complicated electronic structure of interacting fermions with the
pseudogap feature at the X=(π, 0) point and the antiferromagnetic shadow bands.
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Fig. 4: Spectral function Ak=− ImG(k, ω0) at the lowest Matsubara frequency ω0=π/β for
β=5, N=0.85, t′/t=− 0.3, U=5 in the 64×64 Hubbard lattice within the CDet scheme [12].

We now turn to a different route to tackle the “sign problem” in the determinant lattice QMC
scheme and design a strong-coupling perturbative solution for a general Hubbard model. The
starting point is related to the “reference system” idea [13]. The choice of a single-site approx-
imation like dynamical mean-field theory [3] as the reference system leads to the dual fermion
technique [7].

3 Expansion around reference system

We discuss a general path-integral method for expansions around arbitrary reference systems.
In fact, the CT-INT scheme (see Eq. (8)) can be considered as a special case of the reference
system approach which is just the free fermion case, described by the Gaussian quadratic part
G12 of the action in Eq. (3). In this case the path-integral expansion is particularly simple and
coincides with the weak coupling perturbation which is described by the series of fermionic
determinants built from the bare propagators G12. Now we considered a more general case,
where the reference system consists of interacting fermions. We start with the simple case of a
Hubbard-like model, where the interaction strength U is fixed to be the same for the reference
and target systems, and only small changes in the one-electron part will be considered in lowest
orders of the path-integral expansion. In fact this approach has many commons details with
the Dual-Fermion (DF) lattice expansion around the local DMFT starting point [7]. In a more
general case, when the interactions strength is different in reference and system, one should use
a so-called Dual-Boson theory [6].
We consider the simple case of interacting fermions on a lattice within the single band Hubbard
model, defined by the Hamiltonian

Ĥα = −
∑
i,j,σ

tαij ĉ
†
iσ ĉjσ +

∑
i

U
(
n̂i↑−

1

2

)(
n̂i↓−

1

2

)
(17)
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Fig. 5: Schematic representation of a half-filled reference system (left) for the doped (t-t′-U)
square lattice (right). Bottom: Electronic spectral function of the t-t′ Hubbard model calculated
for U=5.6 at β=5 relative to the chemical potential together with the non-interacting disper-
sions (blue line). The reference results are obtained for the half-filled particle-hole symmetric
case t′=0, (left panel), the DF-QMC results for δ=15% hole doping with t′=−0.3 (right).

where tij are the hopping matrix elements including the chemical potential µ in the diagonal

tαij =


t if i and j are nearest neighbors,

αt′ if i and j are next nearest neighbors,

αµ if i = j,

0 otherwise,

(18)

where n̂iσ = ĉ†iσ ĉiσ. We use a “scaling” parameter α, which distinguishes the reference system
H0 for α=0 corresponding to the half-filled Hubbard model (µ0=0) with only nearest neighbors
hopping (t′0=0) from the final system H1 for α=1 with given µ and t′. Note that longer-range
hoping parameters can be trivially included in the present formalism similarly to t′.
The reference system now corresponds to the half-filled (µ0=0) particle-hole symmetric (t′0=0)
case (Fig. 5) where lattice Monte Carlo has no sign problem and the numerically exact solution
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Fig. 6: The DOS of the normal state at β=10 for the reference system corresponding to a 16×16
lattice with t=1, U=5.6, t′=0, and µ=0 using the DQMC scheme and the MaxEnt analytical
continuation to real energy.

for any practical value ofU is possible within a broad range of temperatures [14]. Then we apply
the lattice dual fermion QMC perturbation theory [7, 13, 15] to find the first-order perturbative
corrections in µ and t′. To this aim, it is sufficient to calculate the two-particle Green function
or, equivalently, the four-leg vertex, which can be done accurately enough with continuous time
quantum Monte Carlo. Our reference system already has the main correlation effects in the
lattice and shows the characteristic “four-peak” structure [16] with the high-energy “lower” and
“upper” Hubbard bands at E ' ±5t as well as the two “Slater” peaks close to the Mott gap at
E ' ±2t related to the “band-like” antiferromagnetic splitting of “spin-up” and “spin-down”
electrons for a particular local site, which can be seen in Fig. 6. This is an ideal reference point
to investigate the effects of doping and breaking of partial-hole symmetry by a particular sign of
t′. After the dual-fermion perturbation approach, which we will discuss, the correlated metal-
lic states appeared on Fig. 5 (right panel). The results for the strong-coupling case (U=5.6t)
with practically interesting values of the chemical potential and next-nearest-neighbor hopping
corresponding to cuprate superconductors indicate the formation of a pseudogap and the nodal-
antinodal dichotomy (that is, well-defined quasiparticles in the nodal part of the Fermi surface
and strong quasiparticle damping for the antinodal part) which gives this approximation a per-
spective for practical applications.

We start with a most general definition of a perturbation matrix related to the difference of
one-electron part of action

t̃ = G−10 − G−11 . (19)

This can apply to a general case of a system in an external fermionic bath and therefore defines
our perturbation t̃ in terms of the one-electron part of reference-system action. In case of a pure
Hamiltonian systems, our perturbation is related with the difference of the effective hopping
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matrix tαij and in k-space is equal to

t̃k = −4t′ cos kx cos ky − µ . (20)

In order to formulate an expansion around reference action S0 we express the connection to the
final action S ≡ S1 with the same local interaction in the following form

S[c∗, c] = S0[c
∗, c] +

∑
12

c∗1 t̃12 c2 . (21)

The main idea of the dual fermion transformation is the change of variables (similar to the
Fourier transform) from the strongly correlated fermions (c∗, c) in Eq. (3) to the weakly corre-
lated “dual“ Grassmann fields (d∗, d) in the path integral representation for the partition function
in Eq. (21), followed by a simple perturbation treatment. The new variables were introduced
through the following Hubbard-Stratonovich transformation with the perturbation matrix t̃12 in
real-space (the Einstein summation convention over repeated indices is assumed)

e−c
∗
1 t̃12 c2 = Zt

∫
D [d∗, d] ed

∗
1 t̃
−1
12 d2+d

∗
1c1+c

∗
1d1 (22)

with Zt = det(−t̃) and we always assume the matrix inversion: t̃−112 ≡ (t̃−1)12. Using this
transformation, the lattice partition function becomes

Z = Z0Zt

∫
D[d∗, d] ed

∗
1 t̃
−1
12 d2

〈
ed
∗
1c1+c

∗
1d1
〉
0

(23)

with the standard definition of average over S0

〈· · · 〉0 =
1

Z0

∫
D[c∗, c] · · · e−S0[c∗,c]. (24)

Now we can integrated out the c∗, c fermions and show that the average over S0 can be rewritten
in the form of a “cumulant expansion” [17] or connected correlators 〈· · · 〉0c

〈
ed
∗
1c1+c

∗
1d1
〉
0

= exp

[
∞∑
n=1

(−1)n

(n!)2
γ
(2n)
1···n,n′···1′d

∗
1 · · · d∗ndn′ · · · d1′

]
(25)

with cumulants or connected correlators for the reference system which can be calculated within
the QMC

γ
(2n)
1···n,n′···1′ = (−1)n

〈
c1 · · · cnc∗n′ · · · c∗1′

〉
0c
. (26)

We can write the effective action for the “dual fermions” S̃[d∗, d] in the lowest order approxi-
mation for the dual interaction [15]. The first term in the cumulant expansion in Eq. (25) with
n = 1 or γ(2)11′ which is bilinear over [d∗1 , d2] the Grassmann variables, corresponds to the exact
Green function of reference system

γ
(2)
11′ ≡ g11′ = −〈c1c∗1′〉0 = − 1

Z0

∫
D[c∗, c] c1c

∗
2 e
−S0[c∗,c]. (27)
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1 2

4 3

G34

Fig. 7: Feynman diagram for the first order dual fermion perturbation for the self-energy Σ̃12:
the line represents the non-local dual Green function G̃43, the box the two-particle vertex γ1234.

Note, that all correlators of the “reference system” will be written with the small letters. To-
gether with the term t̃−112 in Eq. (23) this gives a bare Green function for the dual fermions

G̃0
12 =

[
t̃−1 − ĝ

]−1
12
. (28)

The second term in the cumulant expansion in Eq. (25) with n=2 corresponds to γ(4)122′1′ which is
biquadratic over the [d∗1 , d2] Grassmann variables, and gives an effective two-particle interaction
among the dual-fermions.The corresponding connected four-point vertex has the following form
(we skip the “(4)” abbreviation)

γ122′1′ = 〈c1c2c∗2′c∗1′〉0 − 〈c1c∗1′〉0〈c2c∗2′〉0 + 〈c1c∗2′〉0〈c2c∗1′〉0 (29)

with four points correlator or two-particle Green function for the reference system

〈c1c2c∗3c∗4〉0 =
1

Z0

∫
D[c∗, c] c1c2c

∗
3c
∗
4 e
−S0[c∗,c]. (30)

Finally the dual-fermion action in the two-particle approximation has the following form

S̃[d∗, d] = −
∑
12

d∗1 (G̃0)−112 d2 +
1

4

∑
1234

γ1234 d
∗
1d
∗
2d4d3. (31)

Note, the effective interaction term for anti-commuting Grassmann variables has the same form
as for the standard antisymmetric Coulomb interactions (Eq. (3)). We have shown, that the dual
“Fourier” trick transforms strongly correlated fermions with large U1234 interactions to weakly
correlated dual fermions with effective interactions γ1234 which are defined by the screened fully
connected two-particle vertex of the reference system. The first order correction to the dual self-
energy is given by the diagram shown in Fig. 7 and can be calculated for a large system using
the QMC-scheme

Σ̃
(1)
12 =

∑
s−QMC

∑
3,4

γd1324(s) G̃
0
43 , (32)

where the density vertex reads

γd1234 = γ↑↑↑↑1234 + γ↑↑↓↓1234 . (33)
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Fig. 8: Diagrammatic series for the dual self-energy up to the 3-rd order in G̃.

The main trick for practical computations of large systems is related with the possibility to
“factorize” the complicated vertex γ1234 inside the stochastic DQMC process with {s}-auxiliary
fields or the CT-INT scheme with stochastic sampling of interaction order expansion {s}, using
the Wick-theorem

γ1234(s) ≡ 〈c1c2c∗3c∗4〉s = 〈c1c∗4〉s 〈c2c∗3〉s − 〈c1c∗3〉s 〈c2c∗4〉s . (34)

Finally, one needs to find an exact relationship between the dual and real Green functions [7].
We make variation of lnZ in Eq.(23) and Eqs.(2, 21) with respect to t̃

G12 =
δ lnZ

δ t̃21
= −t̃−112 + t̃−113 G̃34 t̃

−1
42 . (35)

Using the definition of the exact dual Green function G̃−1 = G̃−10 −Σ̃ we can get the expression
for the real Green function

G12 =
((
g + Σ̃

)−1 − t̃)−1
12
, (36)

which means that the dual self-energy has meaning of effective T -matrix term.
The Dual Fermion transformation allowed us to use arbitrary reference systems and transform
the strongly correlated lattice fermion problem to an effective action of weakly coupled dual
quasi-particles. In this case even the lowest order approximation can give already reasonable
results. The exact diagrammatic series for the dual self-energy is presented in Fig. 8. The
second order diagram in G̃ which includes γ(6) is local within the cluster and can be calculated
with a similar QMC scheme. The 3-rd order correction contains two γ(4) vertices and it is not
easy to sample inside a QMC run. One may compare second order contributions to Σ̃ with the
fist one and conclude on the convergence of the DF-series.
We can establish also a connection of the DF-formalism with the DMFT approximation: in this
case we choose the reference system as an impurity system defined by a frequency dependent
hybridization function ∆ω so that t̃ = t−∆ω. Moreover, all vertices for such a DF-theory will
be local and the first non-local contribution to Σ̃ will be the 3-rd order diagram in Fig. 8. We
can eliminate all local contributions (e.g. fist two diagrams in Fig. 8) if we chose ∆ω such that
G̃0
loc = 0 or using the k-space:

∑
k

[
t̃−1k − gω

]−1
= 0. Since the impurity Matsubara Green

function gω 6= 0, we can rewrite this condition as

gω =
∑
k

[
g−1ω +∆ω − tk

]−1
, (37)
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Fig. 9: Imaginary part of the normal local Green function obtained for a 16×16 lattice at
β=10, t=1, and U=5.6 using DF-QMC. The results are obtained for the half-filled reference g
(green) and lattice G (magenta) problems, and plotted as a function of Matsubara frequency
ωn=(2n+1)π/β. The lattice problem is calculated for t′=−0.3 and µ=−1.8 (δ=13.3% of hole
doping).

which is nothing else but the celebrated DMFT self-consistent condition for the optimal hy-
bridization function ∆ω and the right hand side corresponds to the k-sum of a lattice DMFT
Green function.

As a “raw” output from this DF-QMC scheme we can present the Matsubara Green functions
in Eq. (36). The result is obtained for a 16×16 periodic lattice with 64 time slices. We normally
measure a DF-self energy using 104–105 QMC sweeps. In Fig. 9 we show the imaginary part
of the starting Green function g, obtained for the half-filled particle-hole-symmetric (µ = 0,
t′ = 0) reference problem using DQMC. The full local lattice Green function G of the final
system is calculated within the DF-QMC scheme. One can see that in the high-frequency limit
ωn ≥ 10 the dual perturbation is very small and G almost coincides with g. However, at low-
frequency the lattice Green function G shows a metallic character, while the reference Green
function g extrapolates to zero at ω → 0, which corresponds to the Mott-Hubbard-Slater gap.
In Fig. 5 (bottom) we show the transformation of the electronic spectral function from the half-
filled (reference) case with µ0 = 0 and t′ = 0 (left panel) to the doped system with µ = −1.45

and t′ = −0.3 (right panel). The results are calculated at the inverse temperature β = 5 using
stochastic analytical continuation from Matsubara space to real energy [18]. In the Mott in-
sulator phase, corresponding to δ = 0% doping, one can see the formation of broad Hubbard
bands around the energy E = ±5t, an antiferromagnetic gap E = ±2t in the antinodal point
X = (π, 0) and a shadow antiferromagnetic bands at E ' −3t in the vicinity of the M = (π, π)

point. Upon δ = 15% hole doping, the spectral function changes dramatically. One can clearly
see a strong effect of t′ on the van Hove singularity that results in the formation of a narrow, al-
most flat band in the Γ-X direction and the appearance of a pseudogap near the X point, which
signals the quasi-localized behavior of electrons related to the formation of fluctuating local
moments. On the other hand, the spectrum remains metallic near the nodal point (π/2, π/2).
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Fig. 10: Imaginary part of the local Green function (proportional to the density of states)
obtained for β = 10 and U = 5.6 for the half-field reference system (blue line) and the lattice
problem with t′ = −0.3 and µ = −1.8 (red line), which corresponds to 13% hole doping.

An example of the calculated the density of states or local Green function for real energies is
presented in the Fig. 10 with standard t′ and the µ for cuprates in comparison with the reference
case. We can clearly see the formation of a narrow quasiparticle peak from the “low Slater
band”, while the Hubbard bands stay approximately at the same position due to the local nature
of Mott-correlations. The intensity of the metallic upper Hubbard bands increases due to the
“merging” with the upper Slater band.
In order to prove the convergence properties of the DF-QMC scheme we calculate the second-
order contribution to the dual self-energy or the second Feynman diagram in Fig. 8. The results
for lattice Green functions of the first order theory with the second order approach for a small
periodic 4×4 system with relatively weak perturbations together with the exact CT-INT solution
for a hole doped lattice with t′ is shown in Fig. 11. There are 6 non-equivalent k-points in the
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Fig. 11: Comparison of real (left) and imaginary (right) part of the Matsubara Green functions
for 6 non-equivalent k-points for first and second order DF-QMC approximations (different
color lines) together with exact CT-INT solution (dots) of 4×4 periodic system for U = 2,
t′/t = −0.1, µ = −0.5 and β = 5.
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Brillouin zone of the 4×4 lattice. Note that the CT-INT exact results (the dots in the Fig. 11)
almost coincide with the second order DF-QMC theory and the first order scheme has small
deviations (better seen for the ReG(k, ω0) part) and only for two k-points close to the Fermi-
surface: the antinodal point at (π, 0) around 0.2 and the nodal point (π/2, π/2) around −0.5

on the left panel of the Fig. 11. Corresponding deviations for ImG(k, ω0) with the same color
code are much smaller and the main deviation can be seen only for the antinode point (red dot
in Fig. 11). All other k-points are already converged with the first order theory. This example
shows the strength and fast convergence of lattice DF-QMC expansions around the suitable
reference system.

4 Dual fermions in spinor space

We can generalize the path integral DF-QMC scheme to include external magnetic or super-
conducting fields and investigate response of the correlated lattice model [19]. In case of an
antiferromagnetic (AFM) external field in k-space hQ = hσxδk,Q with Q = (π, π) we have a
general spinor form of the perturbation

t̃k(hQ) =

(
t̃k hQ
h∗Q t̃k+Q

)
. (38)

For a d-wave superconducting field (Q=0) ∆k = 2hdw(cos kx− cos ky) the quasi-spinor pertur-
bation in Nambu-Gor’kov space reads

t̃k(hdw) =

(
t̃k ∆k

∆∗k −t̃∗k

)
. (39)

In the both case we can use the spinor form of the bare dual Green matrix in Nambu space

ˆ̃G =

(
G̃↑↑ G̃↑↓

G̃↓↑ G̃↓↓

)
. (40)

The correlation effects beyond the reference problem are taken into account by the first-order
contribution to the self-energy (Fig. 7) in the dual space [19]

Σ̃↑↑12 = −
∑
3,4

[
〈c1↑c∗2↑c3↑c∗4↑〉 G̃

↑↑
43 + 〈c1↑c∗2↑c3↓c∗4↓〉 G̃

↓↓
43

]
,

Σ̃↑↓12 = −
∑
3,4

〈c1↑c∗2↓c3↓c∗4↑〉G̃
↑↓
43 , (41)

and similarly for the remaining two spin components. The final expression for the lattice Green
function of real fermions in a superconducting external field has the following matrix form

Ĝk =

(gk + Σ̃↑↑k Σ̃↑↓k
Σ̃↓↑k −g∗k + Σ̃↓↓k

)−1
−

(
t̃k ∆k

∆∗k −t̃∗k

)−1 ≡ (Gk Fk
F ∗k −G∗k

)
, (42)
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Fig. 12: The imaginary part of the normal Green function G (left panel) and the real part of the
anomalous Green function F (right panel) calculated by DF-QMC with a d-wave external field
of hdw = 0.05 at the lowest Matsubara frequency ω0 = π/β for 12% hole doping and β = 8 for
periodic 16×16 lattice [19].

where we introduced a shortened notations for the normal G = G↑↑ and anomalous F = G↑↓

Green function in Nambu space. Similar spinor expressions hold for the AFM Green function.
In the Fig. 12 we plot the imaginary part of the normal Green function G(k) (left panel), as
well as the real part of the anomalous Green function F (k) (right panel). The results are ob-
tained at the lowest Matsubara frequency ω0 = πT for the first Brillouin zone in the presence
of a small external superconducting d-wave field with the amplitude hdw = 0.05. These cal-
culations clearly capture the formation of a large pseudogap in the electronic spectral function
− 1
π

ImG(k) at the antinodal X = (π, 0) point, which exists already at relatively high tem-
peratures β = 5 corresponding to T ' 700 K for the realistic hopping amplitude t = 0.3 eV.
Additionally, we found that the anomalous Green function F (k) is relatively large and has a
very unusual shape. Indeed, ReF (k) features a suppressed spectral weight at the X points, re-
lated to a pseudogap formation in the spectral function, which shifts its extrema in the direction
of the nodal point.
In order to investigate connection of the pseudogap effects with the coherence properties of
fermions at the antinodal X-point with k = (0, π) we calculate the imaginary part of the nor-
mal Matsubara Green function (ImGk) within DF-QMC at the anti-nodal point for a relatively
high temperature β = 5 and different chemical potentials, which correspond to an underdoped
system with δ = 2 − 9%, optimal doping δ = 10 − 18%, and overdoping with δ = 20 − 25%

(the left panel of the Fig. 13). It is useful to take the normalized trace of the Gor’kov Green
function (Gk−G−k)/2 which just means the particle-hole symmetry with the same (ImGk) and
(ReGk=0). Using this Green function, we perform a stochastic analytical continuation to real
energy (right panel of the Fig. 13). We can clearly seen the complicated transformation of the
pseudogap spectral function for fermions at the X-point in the underdoped system to more co-
herent fermions in the optimally doped case with a DMFT-like three peak structure, and finally
to almost normal sharp correlated quasiparticles in the overdoped case.
We would also like to discuss the dependence of the superconducting enhancement on hole
doping. For these calculations we consider a 8×8 periodic lattice with a “bare” fermionic bath,
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Fig. 13: The imaginary part of the normal Green function for periodic a 16×16 lattice on the
Matsubara axis νn = (2n+1)π/β (left panel) obtained in DF-QMC for β = 5, t = 1, t′ = −0.3
and U = 5.6 and different chemical potentials −ω = (0.8, 1.1, 1.2, 1.3, 1.45, 1.5, 1.6, 1.7, 1.8)
which correspond to the hole dopings shows with different colors. Corresponding analytical
continuations using a SOM-scheme to the real axis − ImGk(E) with the same color-scheme
(right panel) for the k = X = (0, π).

which is introduced to reduce effects of the finite spectrum of small a system. In Fig. 14 we
plot the d-wave enhancement of the anomalous Green function (F ) normalized by the external
superconducting field (hdw) calculated at the X point, as a function of hole doping for the two
values of the NNN hopping (t′ = −0.3 and t′ = 0). Remarkably, the dome-like superconduct-
ing behavior is found only for t′ 6= 0. Moreover, the maximal superconducting enhancement
around δ = 15% corresponds to µ = −1.4, which is very close to the position of the van Hove
singularity 4t′ = −1.2 in the non-interacting spectrum. The increase of the superconducting en-
hancement at δ = 15% for the optimal second-neighbor hopping t′ = −0.3 compared to t′ = 0

is about a factor of two. Note that in the electron doped case with t′/t = −0.3 the super-
conducting response is always smaller compare to the hole one, in agreement with the general
experimental knowledge.
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Fig. 14: The enhancement of the anomalous Green function at the lowest Matsubara frequency
ν0 = π/β, with respect to the external d-wave field hdw = 0.05. The ratio of F/hdw is calculated
at the k = X = (0, π) point for the 8×8 lattice at β = 10 using DF-QMC for the NNN hoppings
t′ = −0.3 (magenta) and t′ = 0 (green) [19].
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5 Discussion

We developed the first-order strong-coupling dual fermion expansion for Hubbard-like corre-
lated lattice models in the shift of the chemical potential (doping) and in the second-neighbor
hopping (t′). The starting reference point corresponds to the half-filled particle-hole symmet-
ric system which can be calculated numerically exactly, without fermionic sign problem. For
the physically interesting parameter range of cuprate like systems (around 10% doping and
t′/t = −0.3 we can obtain a reasonable Green function for a periodic 16×16 lattice for a
temperature T = 0.1t. The formation of a pseudogap around the antinodal X-point and the
nodal-antinodal dichotomy are clearly seen in the present approach.
We would like to point out a few main reasons why such a “super-perturbation” scheme works:
first of all, the reference system already contains the main correlation effects which result in
the four-peak structure of the density of states for the half-filled lattice Monte Carlo calcula-
tions [16]; second, the first-order strong-coupling perturbation relies on the lattice four-point
vertex γ1234 (Eq. (30)) which is obtained numerically exactly and has all the information about
the spin and charge susceptibilities of the lattice; and third, in case the perturbation or dual
Green function G̃0

12 (Eq. (28)) is relatively small, results will be reasonable. We discuss also
the complicated question of convergence for such a dual-fermion perturbations and checked nu-
merically the second-order contribution in Σ̃12. For this term one needs to calculate, in lattice
QMC, a six-point vertex γ(6) which is a time consuming problem. Finally, we also discuss an
instability towards d-wave superconductivity, introducing symmetry-breaking fields and show
the complicated structure of the anomalous Green functions.
It is worthwhile to mention that for the starting reference system we can choose not only the
half-filled case, but any doped case where the sign problem is mild, so we can use the DF theory
to expand this numerically exact solution to regions where the sign problem in the CT-INT or
convergence of the CDet is unacceptable for direct QMC calculations.
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Appendices

A Path integral for fermions

We first introduce a formalism of the path integral over fermionic fields [20]. Let us consider a
simple case of a single quantum state |i〉 occupied by fermionic particles [21]. Due to the Pauli
principle the many-body Hilbert space is spanned by only two orthonormal states |0〉 and |1〉.
In the second quantization scheme for fermions with annihilation ĉi and creation ĉ†i operators
with anticommutation relations

{
ĉi, ĉ

†
j

}
= δij we have the following simple rules

ĉi |1〉 = |0〉 ĉi |0〉 = 0 and ĉ†i |0〉 = |1〉 ĉ†i |1〉 = 0 . (43)

Moreover, the density operator and the Pauli principle have the form

ĉ†i ĉi |n〉 = ni |n〉 and ĉ2i = (ĉ†i )
2 = 0 .

The central object here are the so-called fermionic coherent states |c〉, which are eigenstates of
annihilation operator ĉi with eigenvalue ci

ĉi |c〉 = ci |c〉 . (44)

It is worthwhile to note that such a left-eigenbasis has only annihilation operators, due to the
fact that they are bounded from the below and one can rewrite one of equations from Eq. (43)
in the following “eigenvalue” form

ĉi |0〉 = 0 |0〉 .

Due to the anti-commutation relations for the fermionic operators the eigenvalues of coherent
states ci are so-called Grassmann numbers with the multiplication rules

cicj = −cjci and c2i = 0 . (45)

It is convenient to assume that the Grassmann numbers also anti-commute with the fermionic
operators {

c, ĉ} = {c, ĉ†
}

= 0 .

An arbitrary function of one Grassmann variable can be represented by only the first two Taylor
coefficients

f(c) = f0 + f1c . (46)

One can prove the following general many-body representation of coherent states

|c〉 = e−
∑
i ciĉ

†
i |0〉 . (47)

Let us show this for the simple case of one fermionic state

ĉ |c〉 = ĉ
(
1− cĉ†

)
|0〉 = ĉ

(
|0〉 − c |1〉

)
= −ĉc |1〉 = c |0〉 = c |c〉 . (48)
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One can also define a “left” coherent state 〈c| as the left-eigenstates of creation operators ĉ†i

〈c| ĉ†i = 〈c| c∗i .

Note that the new eigenvalue c∗i is just another Grassmann number, not the complex conjugate
of ci. The left coherent state can be obtained similar to Eq. (47)

〈c| = 〈0| e−
∑
i ĉic

∗
i .

A general function of two Grassmann variables can, analogously to Eq. (46), be represented by
only four Taylor coefficients

f(c∗, c) = f00 + f10c
∗ + f01c+ f11c

∗c . (49)

Using this expansion we can define a derivative of Grassmann variables in the natural way

∂ci
∂cj

= δij .

One needs to be careful with the “right order” of such a derivative and remember the anti-
commutation rules, i.e.,

∂

∂c2
c1c2 = −c1 .

For the case of the general two-variable function in Eq. (49) we have

∂

∂c∗
∂

∂c
f(c∗, c) =

∂

∂c∗
(
f01 − f11c∗

)
= −f11 = − ∂

∂c

∂

∂c∗
f(c∗, c).

One also needs a formal definition of the integration over Grassmann variables, and the natural
way consists of the following rules [22]∫

1 dc = 0 and
∫
c dc = 1 ,

which just shows that the integration over a Grassmann variable is equivalent to differentiation∫
· · · dc→ ∂

∂c
· · ·

The coherent states are not orthonormal and the overlap of any two such states is equal to

〈c|c〉 = e
∑
i c
∗
i ci

which is easy to see for the case of one particle

〈c|c〉 =
(
〈0| − 〈1| c∗

)(
|0〉 − c |1〉

)
= 1 + c∗c = ec

∗c.

An important property of coherent states is the resolution of unity∫
dc∗
∫
dc e−

∑
i c
∗
i ci |c〉〈c| = 1̂ =

∫∫
dc∗dc

|c〉 〈c|
〈c|c〉

.
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For simplicity we demonstrate this relation only for one fermion state∫∫
dc∗dc e−c

∗c |c〉〈c| =
∫∫

dc∗dc
(
1− c∗c

)(
|0〉 − c |1〉

)(
〈0| − 〈1| c∗

)
= −

∫∫
dc∗dc c∗c

(
|0〉〈0|+ |1〉〈1|

)
=
∑
n

|n〉〈n| = 1̂ .

Matrix elements of normally ordered operators are very easy to calculate in the coherent basis
by operating with ĉ† on the states to the right and ĉ to the left:

〈c∗| Ĥ(ĉ†, ĉ) |c〉 = H(c∗, c) 〈c∗|c〉 . = H(c∗, c) e
∑
i c
∗
i ci (50)

Within the manifold of coherent states we can map the fermionic operators to the Grassmann
variables (ĉ†i , ĉi)→ (c∗i , ci).
Finally, we prove the so-called “trace-formula” for arbitrary fermionic operators in normal order
(in one-fermion notation)

Tr Ô =
∑
n=0,1

〈n| Ô |n〉 =
∑
n=0,1

∫∫
dc∗dc e−c

∗c 〈n| c〉〈c| Ô |n〉 =

=

∫∫
dc∗dc e−c

∗c
∑
n=0,1

〈−c| Ô |n〉〈n| c〉 =

∫∫
dc∗dc e−c

∗c 〈−c| Ô |c〉 .

The fermionic ”minus” sign in the left coherent states come from the commutation of the (c∗)
and (c) coherent state in such a transformation: 〈n|c〉 〈c|n〉 = 〈−c|n〉 〈n|c〉. One has to use the
standard Grassmann rules: c∗i cj = −cjc∗i and |−c〉 = |0〉+ c |1〉.
We are ready now to write the partition function for the grand-canonical quantum ensemble with
H = Ĥ−µN̂ and inverse temperature β. One has to use the N -slices Trotter decomposition for
the partition function in [0, β) with imaginary time τn = n∆τ = nβ/N (n = 1, . . . , N ), and
insert N times the resolution of unity as follows

Z = Tr e−βH =

∫∫
dc∗dc e−c

∗c
〈
−c
∣∣e−βH∣∣c〉

=

∫
ΠN
n=1dc

∗
ndcn e

−
∑
n c
∗
ncn 〈cN | e−∆τH |cN−1〉 〈cN−1| e−∆τH |cN−2〉 ... 〈c1| e−∆τH |c0〉

=

∫
ΠN
n=1dc

∗
ndcn e

−∆τ
∑N
n=1

(
c∗n(cn−cn−1)/∆τ+H(c∗n,cn−1)

)
In the continuum limit (N →∞)

∆τ
N∑
n=1

· · · →
∫ β

0

dτ · · · , cn−cn−1
∆τ

→ ∂τ and ΠN−1
n=0 dc

∗
ndcn → D [c∗, c]

with antiperiodic boundary conditions for fermionic Grassmann variables in imaginary time
c(τ) and c∗(τ)

c(β) = −c(0), c∗(β) = −c∗(0)
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we end up in the standard path-integral formulation of the partition function

Z =

∫
D [c∗, c] e−

∫ β
0 dτ
(
c∗(τ)∂τ c(τ)+H(c∗(τ),c(τ))

)
. (51)

It is useful to mention the general form of the Gaussian path-integral for a non-interacting
“quadratic” fermionic action, which is equivalent to the Hubbard-Stratonovich transformation
used in the dual-fermion derivation Eq. (22). For an arbitrary matrixMij and Grassmann vectors
J∗i and Ji one can calculate analytically the following integral

Z0 [J∗, J ] =

∫
D [c∗c] e−

∑N
i,j=1 c

∗
iMijcj−

∑N
i=1(c∗i Ji+J∗i ci) = detM e

∑N
i,j=1 J

∗
i (M

−1)ijJj . (52)

To prove this relation one needs to first change variables in order to eliminate J∗i and Ji and
expand the exponential function (only the N -th oder is non-zero)

e−
∑N
i,j=1 c

∗
iMijcj =

1

N !

(
−

N∑
i,j=1

c∗iMijcj

)N
.

Finally, different permutations of c∗i and cj and integration over Grassmann variables will give
detM . As a small exercise we will check such integrals for the first two many-particle dimen-
sions. For N=1 it is trivial∫

D [c∗c] e−c
∗
1M11c1 =

∫
D [c∗c]

(
− c∗1M11c1

)
= M11 = detM

and for N=2 we have∫
D [c∗c] e−c

∗
1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2 =

=
1

2!

∫
D [c∗c]

(
−c∗1M11c1−c∗1M12c1−c∗2M21c1−c∗2M22c2

)2
= M11M22−M12M21 = detM.

For a change of variables in the path integral one uses the following transformation with unit
Jacobian: c→ c+M−1J and

c∗Mc+ c∗J + J∗c =
(
c∗ + J∗M−1)M (

c+M−1J
)
− J∗M−1J ,

which proves Eq. (52). Using the Gaussian path-integral it is very easy to calculate any corre-
lation function for a non-interaction action (Wick-theorem)

〈
cic
∗
j

〉
0

= − 1

Z0

δ2Z0 [J∗, J ]

δJ∗i δJj

∣∣∣∣
J=0

= M−1
ij〈

cicjc
∗
kc
∗
l

〉
0

=
1

Z0

δ4Z0 [J∗, J ]

δJ∗i δJ
∗
j δJlδJk

∣∣∣∣
J=0

= M−1
il M

−1
jk −M

−1
ik M

−1
jl .

Corresponding bosonic path-integrals can be formulated in a similar way with complex vari-
ables and periodic boundary conditions on imaginary time. The Gaussian path-integral over
bosonic fields is equal to inverse of the M -matrix determinant [20].
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