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7.2 Jan M. Tomczak

1 Introduction

Electrons interact via the fundamental Coulomb force, which is long-ranged, strong, and uni-
versal. In a solid, the interaction an electron effectively experiences is often much weaker. This
reduction arises from screening, the collective rearrangement of electrons in the material in
response to a charge perturbation. As Anderson famously noted, “more is different” [1]: the
collective behavior of many electrons cannot be reduced to pairwise interactions in isolation.
The constrained random phase approximation (cRPA), devised by Aryasetiawan et al. [2], pro-
vides a systematic framework for quantifying the screening in a materials-specific way. Cru-
cially, cRPA allows one to disentangle screening processes arising from different energy scales.
By separating screening contributions into low-energy (to be treated explicitly) and high-energy
(to be integrated out) parts, cCRPA yields effective interactions suited for use in low-energy set-
tings, such as the Hubbard model. As such, this method has become a cornerstone in the real-
istic modeling of strongly correlated systems, bridging first-principles calculations and model
Hamiltonians.

Several excellent reviews exist, in particular by Ferdi Aryasetiawan [3,4] from previous editions
of the Jiilich “Autumn School on Correlated Electrons”. Highly recommended are also the
reviews by Philipp Werner and Michele Casula [5] and by Silke Biermann [6].

The current notes require familiarity with elements of quantum-field theory for many-body sys-
tems (suitable books are, e.g., Refs. [7,8]): The formalism of second quantization, (Matsubara)
Greens functions, Wick’s theorem, and Feynman rules will be employed.

The chapter is organized as follows. In Section 2 the random phase approximation (RPA) is
introduced in the context of screening of the Coulomb interaction in a many-electron system.
We will then derive simple results for the electron gas, the relevance of which will carry over
to calculations of solids. We will briefly digress into discussing the GW approach, which will
help us later to put into perspective how the effective interactions that cRPA provides typically
are (or should be) used in higher-level many-body approaches.

Section 3 reviews the cRPA approach for the specific example of SrVO3;. We will discuss how
an effective low-energy model for a subset of orbitals is obtained and compare its interaction to
the bare as well as the fully screened interaction. Finally, we will contrast the level of material
specificity contained in the cRPA interactions and how much of it is typically taken into account
when solving the low-energy model.

2 The random phase approximation (RPA)

Broadly speaking, the random phase approximation' is a technique to approximately calculate
susceptibilities y of interacting systems. The principal advantage of the approach is that it
only requires the explicit calculation of the system’s free susceptibility, x’, i.e., the response
in the absence of the inter-particle (Coulomb) interaction V. Nonetheless, the RPA suscepti-

I'The RPA was originally introduced by Bohm and Pines in 1952. Details of the original derivation and the
name the approach was given as a consequence is of little relevance today.
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Fig. 1: Coulomb repulsion in an electron gas © O O in presence of a (negative) test charge e.
The perturbation is mitigated (screened) as the system’s density reacts to it.

bility contains terms to all orders in the interaction strength by assembling an infinite series of
Feynman diagrams from the building blocks x° and V. Among others, the RPA can describe
collective excitations (we will discuss the plasmon) and many-body renormalizations beyond
Hartree-Fock (e.g., via the GW approach that we will sketch in Section 2.8).

2.1 Derivation of the RPA in the context of screening

The RPA is a fairly general approximation for susceptibilities associated with various degrees
of freedom (e.g., spin, charge, or orbital in the context of solids). Here, we are interested in how
the effect of a fundamental force between two particles (the Coulomb interaction) is modified if
it is “simultaneously” experienced by a collection of many particles (electrons) that interact in
a pairwise fashion from all to all. Imagine we subject our system of thus interacting electrons,
which we describe with the Hamiltonian /, to an external perturbation V;.

Hy=H+V,. ey

We consider the case where V; = — [d®r p(r, t) V (r, t) is an explicitly time-dependent potential
that describes the coupling of the system’s charge density p to the (instantaneous) Coulomb

interaction
1

4meg

2
V(r,t) / &3y : - 7 Peut) 801 )

arising from an additional external electron density pey(r). Here, € is the permittivity of the
vacuum. For example, pex(r') = d(r’) describes a single test charge at position r’, see Fig. 1
for an illustration. The perturbation V; will induce a change in the charge distribution of the
original, unperturbed system. When Fourier-transforming to q and w, this change is given by
02

(0p(q,w)) = (p(q,w)) = (p(q,w)),_, = e X(9, w) pext(q, w) 3)
where we used [d®r [d®r'e’ "= /|y —v'| = 47 /¢? for the Coulomb interaction. The response,
or change in density, screens the perturbation: The extra charge density is accommodated by a
rearrangement of the system’s charge carriers, a process that effectively weakens the perturba-
tion. The crucial idea now is to describe the external perturbation in a way that already accounts
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(to an extent) for the system’s reaction. The following Ansatz suggests itself

(6p(q,w)) = —q Ka,w) (pexc(@:w) — (5p(q,w))). )

In other words, we compute the response to a perturbation given by a modified “screened”
external density, that we empirically choose as the original external density pe, minus the
portion (0p(q,w)) of the system’s charge that redistributes as a consequence of the initial “bare”
perturbation. Since the perturbation has changed, also the response function is different from
the one described by Eq. (3); we called it y. Note that (4) is a self-consistent equation: The
anticipated change in density appears, both, on the left and on the right. Combining Egs. (3)
and (4), we obtain a relation between (a) the response x to the bare perturbation and (b) the
response X to the screened perturbation

x(q,w
X(q7 W) = 6(2 ~ ) (5)
1+ =x(q,w)
or, generalizing to an arbitrary interaction V'(q),
X(q,w
Mgw) = — Xaw) (©)

1+ V(q)xX(q,w)

So far, we have not actually computed any susceptibility. We have only considered two settings
that are, in principle, equivalent. The point now is that it stands to reason that approximating x
instead of x is more promising, since the perturbation at its origin is, in a sense, weaker. That
the perturbation is indeed effectively smaller can be seen as follows. We have

(5p(a,w)) LV (@), w) (pee(@, w) — (5p(q, ) 2 Via)x(aw)pelaw)  (7)
=W(q,w)X(q,w)pexi(q, w) (8)

where we defined an effective interaction W, for which holds

~ Vi(g)x(g,w) © V(a) Y
W(q,w) = aw)  IiV@xae) (a,w)V(a) < V(a) )

where we introduced ¢(q, w), the dielectric function, and the last inequality holds in the limit
(@ — 0,w = 0), since (as we will later show, see Eq. (47)) x(q—0,w=0) > 0.
In the RPA, one performs the simplest possible approximation to the screened susceptibility:

X = x°. In other words, the screened response is approximated by the susceptibility of the
non-interacting system. Consequently,

RPA _ Xo(q, w)
e =7 V(a)x*(q,w) {10
W (qu) = — 9 (11)

14+ V(g)x'(q,w)

While, now, the screened response that we will calculate is by construction independent of the
inter-particle interaction, the RPA susceptibility depends on V' (q). However, this dependence
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is merely explicit. Complicated two-particle expectation values for the interacting system are
obviated, at the expense of including more complicated two-particle processes. As a conse-
quence, we shall be able, in the following, to make use of Wick’s theorem. This simplification
allows the two-particle expectation, oc (c' ccfe), to be factored into two one-particle expectation
values, o (cc)(c'c), as for the purpose of the screened susceptibility we consider the electrons
as non-interacting.?

For the following it will be useful to recall the geometric series,y -, 2" = ﬁ for |z| < 1.
Indeed, assuming convergence, we can rewrite the above RPA equations as a series expansion

( ) _ 0 0 0
q,w) = 1+V( (a0 = "=V £ (12)

W (q,w) =[1+ V(g)x"(q,w) ] V(@)= [1+ VX +...](=V)  (13)

-~

e(q,w)

XRPA (

2.2 Diagrammatic representation

We will now make the connection to the description in terms of Feynman diagrams. In linear
response theory (see, e.g., Refs [7, 8], the susceptibility that links a perturbation coupling to the
system’s charge density to its signatures in the same charge density can be written as

X(r, ', ) = —;L@(X[( £): P, 0)] ) po- (14)

Here, H° indicates that the free susceptibility is governed by an expectation value with respect
to the non-interacting part of the system’s Hamiltonian.

Making use of Wick’s theorem, we can express x° in terms of one-particle Green functions. For
that, we first express the charge density in terms of field operators

r) = $l(r)i,(r). (15)

Here, 1(r) creates an electron at a position r in continuum space. The connection with the
perhaps more common formulation on a (discrete) lattice is made by introducing a basis set,
e.g., in momentum-space { ¢y, (r)}, whence

) =) un(r)Cuno - (16)
kn

In the later parts of this section, we will study, for illustrative purposes, the charge response in
the electron gas. We will therefore now assume a setting with a single band (n = 1) described

’Here, the RPA was derived through physical arguments for the density-density response. More generally,
the RPA can be obtained through a truncation of the Green function’s equation of motion (see, e.g., Ref. [7]): In
the higher-order Green function that arises from the commutator with the interacting part of the Hamiltonian, one
decouples the group of operators belonging, on the one hand, to the perturbation and, on the other hand, those from
the particle-particle interaction in a mean-field fashion. Further, one approximates the arising expectation values
by using only the non-interacting part of the Hamiltonian.
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by plane waves, i.e., i (r) = exp(ikr). While a more general formulation is of course possible
(and used in practice), this setting will keep notation light. It follows that

Z Vi), (r) = Z ChoCrror € il —kjr Z CLUckJqu elar (17)
kk’ kqo

and writing  in the Matsubara (imaginary time 7) formalism, we find

I‘ I' T Z Z <Tcko Ck+q0'< )CL ’(0)Ck’+q/o"(0)>H0 eiqreiq’r’ (18)

kqo k'q’o’
= Y T (7) erao (T) el (0) i —aor (0) ) o (19)
kk'co’q
Where we exploited momentum conservation, k+k’ = k+q+k'+q" < = —q. Then,

Wick’s theorem tells us that there are two contractions that can be decoupled into pairs of
Green functions

0 T T
K(@.7) = 3 (Tl (7)escrqn (7)o (0t (0)) 20)
kk’co’ | | |
= > (T (Merar ™) (Trcky (0 g0 (0)) @1
kk’co’ 5q0 - 6q0‘nfk,0,
+ <Tckcr Ck’ o )> <7:'Ck+qo(T)CTk’a’(O)>
Gﬂo'(_’r) _Gﬁ-q-q (T)},kﬁ»q,k’ 600"
k+q, o
—bqon® — Z G (—7) GY oo (T) = 6qon® +0 (:) T (22)
k,o

The first term in Eq. (21) and following (Where n = Y 1. (nks)) only contributes for q = 0,
i.e., it is uniform in space, f(q=0) = [d°r f(r). It is also 7-independent, i.e., static. Thus
corresponding to a mere global shift of the origin of space, we will neglect this term. With only
the bubble diagram remaining, and using Eq. (12), we see that the RPA consists of the following
subset of 2-particle diagrams

=Q+%+mﬁm (23)

where the minus sign in front of V' comes from the corresponding Feynman rule: one minus

sign per power of the interaction. In turn, the screened interaction can be represented as

o = >VM<+W P C o C ot e 24
T (—V) (0 (=V))2

This (two-particle) series is similar to the (one-particle) Dyson equation for the one-particle

=>=:+++@—>:- (25)

Green function
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Indeed, in complete analogy, we can visualize Eq. (11) by

Al = Sl S e (26)

~—— —— ~ v
-w -V o7

VX0 (=W)

which is a so-called Bethe-Salpeter-equation (BSE), namely the one in the “particle-hole chan-
nel”: Among the lines connecting V' and W one points to the right and one to the left, corre-
sponding to a particle propagating in time from 0O to 7 and one propagating backwards in time,
which we can alternatively identify as a hole propagating forward (cf. Eq. (22)).

The RPA is an approximation in that it contains only a subset of all possible two-particle dia-
grams. The general expression of the screened interaction, containing more or all diagrams, can
be visualized by where P is a place-holder for all possible, so-called polariza-
tion diagrams?

[Pl =CO+ O+ D+ (I @7)
- —

renormalized vertex
propagators correction
=

+ CorT D+

First, we note that the polarization only contains diagrams that are “V-irreducible”. Indeed,
diagrams that can be disconnected into two parts by cutting an interaction line (see, e.g., the
stricken-out diagram above) are recursively generated in the BSE, Eq. (26), and have thus to be
excluded in the polarization. This is in complete analogy to the irreducibility of the self-energy
in terms of the propagator. There, the recursion in the Dyson equation generates diagrams
that can be separated into two parts when cutting a Green function line. Second, the RPA is
the lowest order approximation of the V-irreducible polarization. Higher order terms can be
classified into two categories

1. Diagrams where individual Green function lines are dressed with self-energy insertions.
These terms can be accounted for in so-called “bold” theories, where the free propagators
Gy (single line) are replaced with interacting Green functions (double line), see Eq. (27).

2. More complicated diagrams in which interactions couple different propagators. These
terms are called “vertex corrections”.

The RPA is non-perturbative in the sense that in the susceptibility, terms to all order in the
interaction are generated (by virtue of the geometric series we do not have to compute them
one-by-one). Still, as is evident from the above diagrams, there are contributions, again, at all
orders, that are not included in the RPA. Therefore, the RPA is in practice still an approach best
suited for weak coupling.

3In the cRPA and GW literature, instead of the charge-charge susceptibility x, an object called the polarization
P = —y is used.



7.8 Jan M. Tomczak

2.3 RPA for the electron-gas
2.3.1 Evaluation of °

The evaluation of x is elementary in the Matsubara formalism

X(q,iv,) = -2 Z Z ﬁGﬁJrq Wi +ivy) G (iwp,) (28)
k iwm
1
——}j}j. . : (29)
15} — — lwm + iV~ Ektq W — €k
1 f(z)
= -2 — ¢ d 30
227”;]{ © (2 4 iy — €xiq) (2 — €x) 39)
f(ex) €k+q)
-2 (31)
Z Zl/n 5k+q_5k)
where we used v, = 2”7” — P =1 = f(exrq—iv) = f(ekiq)-Analytical continuation to
real frequencies iv — w-+i0" leads to the (retarded) Lindhard function
X q) —9 Z f 5k+q) f(gk) ) (32)

w — (ektq—ex) + 0T
Quite generally, poles in propagators G or linear response susceptibilities y describe eigen-
modes of the system. Here, Re x°(q,w) diverges for w = ey, q—¢ex > 0if &y is an occupied and
€k+q an empty state, as dictated by the Fermi functions. One speaks of particle-hole excitations.
These are illustrated in Fig. 2.
Had we allowed for the presence of multiple bands, n, we would have obtained a slightly more
complicated Lindhard function of the form

w) =2 Sk, q) Hewraw) = feia) (33)

W — (5k+qn/_5kn> + 0t

where
Sk, q) = / & / 1 e (o (gt (™) (4)

with the eigenfunctions ¢y, (r) = (r|kn).

Fig. 2: Particle-hole excitations. For an occupied state at €y and an unoccupied state at €y q,
the Lindhard function will have a pole for the indicated frequency w > 0 and momentum q.
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2.4 Excitations encoded in yRPA

What are the excitations encoded in the RPA susceptibility? For this, we perform in Fig. 3 a
graphical analysis of

_RPA _ ;\io(q’ w)
@) =1 Vig)(q,w) 53

at fixed momentum q. The (real-part of the) RPA susceptibility diverges when the denominator
cancels, i.e., V(q)\"(q,0) = —1. First, we see that the poles of " translate into poles of ™.
While individual poles are shifted, a dense continuum emerges in the thermodynamic limit
that is shared between \” and y"". This particle-hole continuum is confined by the possible
values of ey q—¢x: The one-particle spectrum available determines the energy/frequency range
of these eigenmodes. The crucial observation now is that the 1/w decay in Re x®¥'4 causes an
additional pole at w = w, above the one-particle continuum, whose existence hinges on the
presence of the interaction V. This mode is called the plasmon. It corresponds to a quantum of
collective plasma oscillations.

Classically, plasma oscillation can be understood as follows from electrodynamics: Consider a
positively charged rigid and periodic ionic background, populated by negatively charged elec-
trons. When electrons are displaced with respect to the ions, the Coulomb force tries to re-
store their equilibrium positions, acting as a “spring” causing the electrons to oscillate. As-
suming an oscillating charge density p(w) = po exp(—iwt), the continuity equation becomes
V.j = —0p/0t = iwp(w). Combining with Ohm’s law j(w) = o(w)E(w) and Gauss’ law
V-E(w) = p(w)/eo, one finds iwp(w) = o(w)p(w) /€. For this equation to hold for an arbitrary
p(w) requires €(w) = 1 + io(w)/eow 2 0. According to Eq. (9), this is the same as demanding
1+ V(q)x°(q,w) = 0, which precisely holds for w = w,, the plasmon! Above w,, absorption
can no longer take place, and the system is transparent at those frequencies.

Jk,q:w = expq—ek >0

Fig. 3: Eigenmodes encoded in the RPA susceptibility: The particle-hole continuum arising
from accessible differences of one-particle energies, 0 < w = ey q—cx < wy and the plasmon
excitation in the electron gas.
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2.5 Properties of the plasmon

Consider x(q, w) in the limit g — 0 at finite w

flex) — f(exiq)
Re x%(q,w) = =2 a 36
X(a,w) Z = gkﬂ_gk) (36)
ek
f(e-x) )
) - 37
Z(w— (ek+q—ek) W — (E-k—E-k—q) G
€k+q 5k)
= 4 (33)
Zf €k+q—€k)
q—)O 2 dgk 2
= S 2 [k 0 3
2 / e O (Ml et 1) (39
=0 (angular integration
2
S (40)
mw

where we made the replacement k+qg — —k in the second term of Eq. (37), used the (even)

symmetry of the dispersion e = h?k?/2m = e_.,* andn = 2 gjrkg (¢x) is the number
density of electrons. Neglecting Im xR in Eq. (10), this leads to
—nq?/(mw? nq?/m

T 1-V(gng?/(mw?)  w? —w?

where, using the Coulomb interaction, V (q) = e*/(egq?), we defined the plasma frequency

2
Wy = 4| —— > 0. (42)
€gm

This limiting form of the RPA susceptibility clearly exposes the plasmon as an extra mode in
the system. Typically, w, = O(10 eV). For example, in solid sodium, w, ~ 6 eV [9].

Crucially, we note that the finite excitation energy for ¢ — 0 is intimately linked to the long-
range nature of the Coulomb interaction (associated with the singularity of V'(¢) at vanishing
momentum). If the electrons were to interact via a short-range Yukawa interaction, %ﬁ
(with finite gpp; see (46) below), (41) would yield a vanishing plasma frequency and a phe-

nomenon known as “zero sound” emerges.’

“In the one-orbital case, e = £_j also holds (by virtue of Bloch’s theorem) for dispersions on a lattice. For
multi-orbital Hamiltonians, instead, inversion symmetry is required.

>The RPA procedure described here is very general. Applying the RPA formalism, e.g., to the spin-flip sus-
ceptibility of a ferromagnet, one finds a collective spin-excitation called the magnon, whose energy vanishes for
g — 0. In this case, the collective excitation is a so-called Goldstone mode: 1t is associated with the remaining
all-up-or-all-down spin-flip freedom of the spontaneously broken spin-symmetry of the ferromagnetic state. Refer-
ring to the relativistic energy-momentum relation, E = /(pc)? + (mgc?)?2, zero sound and the magnon are called
“massless” excitations (mg = 0 = F « |p| = 0(p — 0)), while the plasmon of the electron gas is a “massive”
excitation.
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E
1-particle continuum
(from poles of x")
wnlg Im y° finite — finite
Wy lifetimes
plasmon (additional /
pole in YRP4) finite
dispersion for g > 0
N q/2kr
-

Fig. 4: Excitation spectrum of the electron gas (in dimensions d > 1) within RPA. The shaded
region delimits the particle-hole transitions between one-particle states, as already encoded
in the free susceptibility. At small momentum q, there is an additional, collective mode: the
plasmon. This excitation is a many-body effect. In fact, its existence requires the Coulomb
repulsion between electrons.

2.6 The excitation spectrum of the electron-gas within RPA

To put the collective plasmon mode into context to the particle-hole excitations described pre-
viously, we characterize their energy range. Transitions between one-particle states occur for
poles in Re XO, 1.e., for frequencies

ﬁ 2

h
W= Elrq T BT - + — |k| lq| cos 6. (43)

When we are in two or more dimensions, this yields a particle-hole continuum delimited by

R*¢> Rk R*¢> R’k
maX(O,—q— ")) <w e "4

<w< (44)
2m m 2m m

This range is visualized as a function of momentum ¢ as the shaded region in Fig. 4. In particu-
lar, in the limit ¢ — 0, the particle-hole continuum vanishes (linearly). Consequently, for small
momenta ¢, the “gapped” plasmon excitation lies far above the one-particle continuum.

2.7 Static screening (w=0) in the long wavelength limit (q—0)

We return to the motivation of these notes and study, how the response screens the Coulomb
interaction within RPA. First, we specialize the Lindhard function to the static case (w=0) in
the long wavelength limit (q—0). There,

Re x"(q, w=0) 22 f Ek €k+q 209 Z < Der ) =UNO) @)

—(Exyq—¢
k+q—Ek) ”
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where we further assumed low temperatures and /N (0) is the value of the non-interacting sys-
tem’s density of states, N(¢) = ), d(e—¢x), at the Fermi level. From this follows

2
V(q) Ee p) 62 1
W (jal<1,w=0) = P YTt e
(al w=0) 1+ V(q)x°(q,w = 0) 14+ < 2N(0) €0 q2+Q%F (40

e0q?

where grp = %N (0) is the (inverse) Thomas-Fermi screening length. Fourier transforming
this interaction to three-dimensional real-space, while assuming W (|q < 1,w=0) to be valid
for all g, leads to the Yukawa potential
o2
W(r) = — el (47)
€or
While the above derivation is approximate, this result provides important insights: In the pres-
ence of many particles interacting via the fundamental Coulomb force, the repulsion actually
“felt” by the charge carriers is screened. Instead of a large and algebraically decaying interac-
tion, V' (r)oc1/r, the effective inter-electronic repulsion is reduced in magnitude and it becomes
far more short-ranged. Note, in the present case of the electron gas, screening only occurs if
the system is metallic (/N (0)>0). Instead, in a solid, there are many bands or orbitals, both
occupied and empty that contribute to x°, via inter-band transitions, see Eq. (33). Thus, while
less efficient, screening also occurs in insulators.

The Yukawa form of the interaction can loosely be taken as a motivation of the Hubbard model.
In its Hamiltonian the electron-electron interaction is assumed to be short-ranged to the extent
that it is local.® Specifically, the Hubbard interaction takes the form Un;sn;, with n;, = cjacwz
Only when electrons sit on the same lattice or atomic site ¢ do they experience a repulsion U.
The spin-structure of the interaction term is dictated by the Pauli principle because, in the ab-
sence of other quantum numbers (e.g., an orbital index), two electrons of the same spin cannot

be present on the same site (at the same time).

2.8 The use of screened interactions: The GW approach

In Section 3 we will discuss how RPA-based techniques can be used to set up effective low-
energy models from first principles. These models are typically cast into the form of a multi-
orbital Hubbard Hamiltonian which is then solved with sophisticated many-body methods.
However, there is great merit in directly using screened interactions W, of the kind that we
just discussed. A popular and, at least formally, rather simple technique based on the screened
interaction W is the GW approximation [10, 11]. Here, we will only provide two cartoon ap-
plications of this approach that will help us later to illustrate deficiencies in typical workflows
for simulating correlated materials.

61t should be stressed that the Hubbard model is a lattice model. Hence, locality is to be understood in the sense
of a Wannier orbital yg (r) = (r|R), i.e., as pertaining to a region in space surrounding a discrete position of an
atomic site or unit-cell R, instead of the point locality §(r—r’) in the continuum description of the electron gas.
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As mentioned in the introduction, we cannot solve the full Hamiltonian that describes the solid
we are interested in. One way to approximately simulate the system is the use of perturbation
theory: We identify a parameter in the system, which, when set to zero, allows for a full solution
of the problem. Then we perform a perturbative expansion in said parameter. At infinite order,
we would describe the original problem exactly. The hope is, however, that if the parameter is
small, a low-order expansion is sufficiently accurate.

Most frequently the interaction is considered as the perturbation to the exactly solvable non-
interacting system. But which interaction to we perform our expansion in? The usual choice
is the bare Coulomb interaction V. In that case, first-order perturbation theory amounts to the
Hartree-Fock approximation. We could, however, make an expansion in terms of a screened
interaction V. At infinite order, both expansions should yield identical results, but evaluations
at finite order will differ. The argument for an expansion in W is, at least intuitively, straightfor-
ward: Screening reduces the interaction. The quantity we are expanding in is therefore a smaller
parameter than the bare interaction—suggesting that a lower order in the expansion is sufficient
than would be needed for the much larger bare interaction. Also, the RPA screening contains
Feynman diagrams to all orders in the bare interaction, meaning that already a first-order ex-
pansion in W creates an infinite number of self-energy diagram. This first-order expansion is
called the GW approximation. Diagrammatically, the GW self-energy is

DV (K, iwy,) = J’r—N::\‘L = —% > GOK iwn) W(k—K iw, —iwy)  (48)

iw, s,k i , s
n'> hence the name "GW”

e e s > W

We will now evaluate this GWW diagram for two illustrative cases. Instead of computing the

screened interaction, we will motivate typical forms of W for solid-state systems.

2.8.1 The non-local exchange self-energy

Let us first apply the GW approximation for the static, short-ranged (but still non-local!)

Yukawa interaction from (46): W(q) = = p +1q2 . For the sake of simplicity, we restrict
TF

the evaluation to one spatial dimension, set 7'=0, and assume a free-electron dispersion €5, =

(hk)?/(2m) filled to the Fermi vector k. Then, an evaluation of the GW diagram is elemen-
tary, and yields

S = (D=1 Y % S GO —g, i) W (q) (50)

= —Zq:f(ac—q)W(Q) = —%: flew) W(k=Fk) 5D
=%k —epr)
2

e? [kF 1

k—k k
S = (arctan( F)—arctan(—)). (52)
€0.Jo (k—K')* + qtp  €ogrr qrr qrr
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....... QTF/k?F =15
--- qu/kF =1.0
_QTF/kF = 07
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Fig. 5: Momentum-dependence of the (toy-model’s) exchange self-energy. Considering the
renormalized energies, e, — ex+X (k), occupied states (k < kr) are pushed down relatively to
empty states (k > kp), increasing the bandwidth or band-gap. Note: To conserve the particle
number, the chemical potential has to adapt, e.g., in a coherent metal at T=0: p — p+X(kr),
which, here, we chose at the origin of energies.

This self-energy, plotted in Figure 5, modifies the bare excitations €5 in a way that is very
different for occupied (k/kr < 1) and for empty (k/kr > 1) states. Indeed, in an effective
dispersion, g, — ex+AE(k), with AE(k) = X (k)—X(kp), the former are pushed down, the
latter are pushed upwards. Note that we added a chemical potential shift ¥'(kr) to AF to assure
conservation of particles (at 7'=0). This pulling away of states from the Fermi level enhances
the bandwidth in a metal or the band-gap in a semiconductor.

This simplistic example highlights a crucial merit of the G approximation, namely the non-
local exchange contribution to the self-energy. Most notably, band gaps in semiconductors, such
as Si or GaAs come out far too small in density-functional-based electronic structure methods.
Through the mechanism illustrated here, the numerically more expensive GW approximation
instead yields significantly larger and more accurate values for band gaps. This increase in
kinetic energy (or band-gap) renders the system less correlated.

2.8.2 Self-energy from a dynamically screened interaction W

Screening is a dynamical process. Hence, the Lindhard function for x°, Eq. (32), the RPA
susceptibility x, Eq. (10), and the screened interaction W, Eq. (11), typically have a notable
frequency dependence. A phenomenological form for the RPA screened interaction is’

B N 1 B 1 B
Ww) =V +({V-U) 2 <w—wp +i0t  wtw, + z'0+) = VA Welw) ©3)

"Note that the given W (w) is the time-ordered version of the interaction, with which we could build Feynman
diagrams with real frequencies. The relation to the retarded interaction W™ (w) is Re W™ (w) = Re W (w) and
Im Wt (w) = sgn(w) Im W (w).
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W(w—oo) =V ~

O(15eV) above w,
w electrons cannot fol-
low oscillations —
medium ’transparent’

-

K—)U o= "ReW(iv)
\ Wp

ImW
W(w=0) = U \

screened interaction
~ OB-5¢eV)

plasmon pole
wp ~ 10eV

Fig. 6: Phenomenological form of the frequency dependence of the RPA-screened interaction
W (w) on the real-axis. Also shown is the Matsubara counterpart W (iv) which is purely real.

that is illustrated in Figure 6: At large frequencies, screening is ineffective and the screened
interaction approaches the bare Coulomb repulsion, Re W (w—o00) — V. This can be under-
stood from the electrodynamics point of view, already alluded to in Section 2.4: For frequen-
cies above the plasma frequency w,, the system’s electrons can no longer keep up with the fast
pace of charge perturbations. The charges thus cease to mitigate the perturbation and the sys-
tem becomes transparent. At the plasma frequency w,, which is a resonance (of the collective
eigenmode) of the system, the interaction has a pole. Below w,,, Re W (w) is smaller than V" and
approaches a value U < V' in the static limit, as motivated by Thomas-Fermi theory above.

Comparing to the general form of the screened interaction in the RPA, Eq. (11), the expression
above only accounts for the collective plasmon pole, not the electron-hole continuum arising
from the Lindhard function. As such, it corresponds essentially to the ¢ — 0 limit for the
electron gas discussed in Section 2.5. Further, in the case of a multi-band systems, inter-band
transitions are neglected. Despite this limitation, Eq. (53) encodes well the overall shape of a
screened interaction as computed from first principles, cf. Figures 6 and 9.

On the Matsubara axis, the dynamical part W.(w) of the interaction reads

W(iy)z/d@uM:f( S ) (54)

W—w W—Wp w+wp

with g2 = (V—-U)w,/2.

Evaluation of the GW self-energy. Forgoing any complications of momentum-dependencies,
let us assume a simplistic non-interacting electronic structure of a single level

Hy=e)» clc,. (55)
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Now, we have all the ingredients necessary to evaluate the GW diagram. We limit the calcula-
tion to the dynamical part of the interaction W, (w). Note also that, despite the name GW, the
propagator in the diagram is the one of the non-interacting system, G°(iw,,).

1

E(an) = _E Z GO (iwn’)Wc(iwn - iwn/) (56)

1 1 1
R PR (C) ( - ) 57)

2mi Z—E\lWp —2—Wp Wy —2+w
—np(—wp)=1 —np(+wp)x0

_ g f(e) = flwptiwy) — fe) + [wptiwy) (58)

Wy — € — Wp Wy — €+ Wp

e ) 59)

n—E€—Wp Wy —E+w

Where we assumed w, > kgT. Let us further consider ¢ < —1/4, i.e., we require the state ¢
to be occupied, f(g) = 1. Then the self-energy simplifies to
1

. 1 iw—swi0+
(i) giw—5+wp @) gw—8+wp—|—i0+ ©0)

From this self-energy, we can obtain the excitation energies from the poles in the interacting
Green function, G(w) = [w—e—X(w)] 7!, ie.,

92

w—s—ReE(w);Oﬁw—e—T:O (61)
w—¢e+w
2 2
N T A N S o (62)
2 7 2 W e—wp,— g% wp

Hence, there are two peaks in the GW spectral function: w, corresponds to the quasi-particle
peak that shifts from its original position € < 0 towards the Fermi level. In a solid with dis-
persive bands, this would correspond to a bandwidth narrowing. The other pole, w_, which for
g < w, is at a distance of w, below the quasi-particle peak is the signature of the plasmon
excitation encoded in W (w).

The screened interaction thus causes a transfer of spectral weight from the quasi-particle peak
to a plasmon satellite. We can estimate the transferred weight from the self-energy, akin to what

is done in Fermi liquid theory. Indeed, assuming a form X'(w) = X(w=0) + (1 — £ )w + O(w?)
1 z
w—e—X(w)  w—Z(e+X(0))

out incoherent contributions from higher energies into G,,.. Obtaining the quasi-particle weight

leads to a Green function G(w) = + Giine(w), where we have separated

Z from the derivative of the GW self-energy, we find®

B ORe X\ ! B q> !
2= (50 ats) )

w=

8 Alternatively, we could linearize around the bare level ¢ or the pole w, instead of the Fermi level.
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We see that spectral weight transfers, of magnitude 1—7, to the plasmon satellite that reduce

the quasi-particle weight are large for states close to the Fermi level (small |¢|; ¢ < 0), large

plasma frequency (w,; because g> = (V—U)w,/2), and large screening effects (large V —U).’
The above two models illustrate the principal merits of the GWW approximation:

1. the inclusion of momentum-dependent exchange contributions (that widen bandwidths)
arising from non-local interactions

2. dynamical contributions (that cause bandwidth narrowing and satellite spectral features)
originating from dynamical/retarded screening effects linked to the physics of plasmons.

3 The constrained RPA (cRPA)

For simulations of strongly correlated materials methodologies based on density-functional the-
ory or the GWW approximation are often insufficient. For example, the Mott transition and Kondo
physics involve orbitals, typically from 3d and 4 f shells, whose radial extent is small enough
to reduce bandwidths to an extent that makes them comparable to the energy scale set by the
Coulomb interaction. Then, interactions are no longer a perturbation to the almost-free electron
picture and more sophisticated techniques have to be used. However, correlation effects are pro-
nounced only for partially-filled orbitals that live close to the Fermi level. Further, higher-level
many-body techniques commonly have an unfavorable scaling with the number of orbitals they
can handle. Physics and methodological limitations thus suggest the use of effective setups that
focus on a limited number of low-energy excitations. Identifying (or assuming) strong local
interactions as dominating the physics allows for a further reduction of complexity, and, more
often than not, the material problem is cast into the form of a multi-orbital Hubbard model. It
is the workflow for this setting that we will describe in the following.

The overall goal is to devise a low-energy, few-orbital Hamiltonian that, when solved exactly,
yields the same result for the degrees of freedom it contains as the exact solution of the initial
full Hamiltonian of the solid [13]. Needless to say that exact solutions of neither the full nor
the effective system are actually obtainable. The motivation is that for the model with less
degrees of freedom, one could afford applying a more accurate methodology than would be
possible for the initial Hamiltonian. A procedure that has become common practice is to seek
the one-particle part of the desired low-energy Hamiltonian and its interaction terms separately.

Clearly, the GW approximation is not exact. Thus, the question arises of how reliable it is. Incidentally, the
electron-boson model, consisting of a spin-less level £ with the interaction W (w) given, is exactly solvable [12].
The gist is that GW does well for the quasi-particle peak, w$** = & + g2/w, and Z=t = ¢~(9/ wp)* =
1 —g%/w? + g*/(2w,) + ..., while the exact solution has infinitely many (instead of just one) plasmon satellites

exact __ 2
at we*t = ¢ + g% /wp, — N X wp.
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Fig. 7: Band-structure of SrVOs3. DFT results (black) are overlaid with the bands of the max-
imally localized Wannier Hamiltonian for the vanadium t,, orbitals (red). The Fermi level
corresponds to the origin of energy.

3.1 The one-particle part of the effective low-energy Hamiltonian

The starting point is a one-particle band-structure, e.g., obtained from density-functional theory-
based approaches,'? like the one shown in Figure 7 for the transition-metal oxide SrVOs or the
sketch in Figure 8. We then identify a subset of bands (or an energy range) around the Fermi
level that we believe to host the physics we wish to describe (e.g., the bands marked in red).
We now interpret the dispersions of this target low-energy subspace as the one-particle ingre-
dient to the interacting Hamiltonian that we seek. The assumption here is that DFT does not
at all account for the physics that is to emerge from the interactions that we will supplement
the dispersions with. Since the Kohn-Sham spectrum is a set of one-particle dispersions, the
system’s action is Gaussian and all undesired states can be integrated out. This procedure leads
to a dynamical (or retarded) effective action for the small number of chosen states. A (static)
Hamiltonian whose spectrum reproduces these low-energy dispersions can still be constructed
through a linearization of this effective action, using or expanding on the idea of Lowdin down-
folding [14]. A more elegant alternative is the use of (maximally localized) Wannier func-
tions [15]. These functions, (r|RL) = pgr.(r), localized in a unit-cell R at the position of the
atom hosting orbital L, are constructed from a subset of Bloch (or Kohn-Sham) states, ¢y, (r)
via a unitary transformation

v

o d?’ke*ZkRZ oL Y () (64)

PrL(r) =

Essentially, Wannier orbitals are Fourier transforms of the Bloch eigenfunctions. However,

(gauge) freedom allows for a unitary mixing instead of a mere 1-band (n) to 1-orbital (L)

11

correspondence.’’ In maximally localized Wannier functions, this unitary ambiguity is used

10 Although we remember that there is no actual justification for interpreting the auxiliary Kohn-Sham spectrum
as the excitation energies of our system, empirically this works rather well.

""Complications may arise if the eliminated “high-energy” bands overlap or cross the low-energy sector. How-
ever, also for these situation a disentangling is possible, for details see Ref. [15].
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to localize the Wannier function through minimization of the radial extent

2=% <<RL| R2[RL) - |(RL| R\RL>]2) , (65)
L

where R is the position operator. The Wannier orbitals are then used to construct the low-energy
Hamiltonian, e.g., in real-space
0 " —ikR K k

Hpp (R ;51«1 (OL[pxn) (prn RL) Ze ( diag(- - e -+ ) U )>LL, (66)
As an example, we will discuss the transition-metal oxide SrVOs. Strontium vanadate is a
perfectly cubic perovskite in which Sr atoms sit at the corners of the cube, the V atom in the
center and the O atoms at the face centers. The vanadium atom is thus surrounded by an oxygen
octahedron, which causes a crystal-field that splits the V-3d states into a low-lying ¢, triplet and
a higher e, doublet. With a nominal oxidation state of V4, the ¢,, states are nominally filled
with one electron. This partial filling places the ¢y, states directly at the Fermi level, as can be
seen in the DFT band-structure depicted in Figure 7. In the following, we shall be interested in
constructing a low-energy model that solely comprises said ¢, states. If we were interested in
the material’s optical properties, say in the visual range, O(1.6-3.3eV), a setup that includes,
at least, the O-2p states and the V-e, would be advisable.
Performing a Wannier projection onto the t5, states provides us with the one-particle Hamil-
tonian, HY,,(k) = >, exp(ikR)HY,,(R). Its eigenvalues trace the dispersion of the three
tog-derived bands, as indicated by the red lines in Figure 7.

3.2 Interactions in the effective low-energy model

To compute the interacting part of the effective Hamiltonian, we need to account for the screen-
ing of all the states that we have eliminated. However, we do not want the fully screened
interaction W that we have talked about before. We are seeking the bare interaction U of the
effective Hamiltonian that describes the low-energy subspace. Indeed, maybe we want to per-
form perturbation theory in U or compute susceptibilities with beyond-RPA methods. So, the
idea is to constrain the contributions to screening by eliminating all particle-hole transitions
that occur within the target subspace, as detailed in (the caption of) Figure 8. This idea was
pioneered by Ferdi Aryasetiawan et al. in Ref. [2]'? and is nowadays known as the constrained
random phase approximation (cRPA).

One thus separates the Lindhard function, Eq. (33), according to the start and end points of
the particle-hole transitions into y° = yOhigt 4 01w \where y%1°% contains all transitions that

0,high

are confined to the low-energy subspace (red in Figure 8), and x all others. Then, we can

define the partially screened interaction as

V(q)
14V (q)xOhieh(q,w)’

U(q,w) = (67)

2Worth mentioning are the some prequels [16, 17] and the sequel [18].
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Fig. 8: Contributions to the Lindhard function. The RPA employs as building block the free sus-
ceptibility, xo(q,w > 0), which sums up all possible transitions between (at T = 0 occupied)
states €y, 1, and (empty) states €., 4. In cRPA, the band-structure is separated into high-energy
(black) and low-energy (red) dispersions: We wish to eliminate the former, while the latter
forms the one-particle ingredient to the effective Hamiltonian that we seek. To obtain an effec-
tive interaction for the low-energy subspace of orbital or bands, we constrain the contributing
transitions to those that occur within the high-energy subspace, as well as transitions between
the high-energy and the low-energy space. Examples for such transitions are indicated by solid
black lines that connect an occupied state (solid circle) with an empty state (open circle). In
other words, contributions to the screening that arise from transitions within the low-energy
space are omitted. An example for such a transition is indicated by the red dotted line.

and it is elementary to show that, when screening further, with %'V, we recover the fully
screened W (q,w) = U(q,w)/(1 + U(q,w)x*""(q,w)). To match up the interactions to the
one-particle Hamiltonian, we transform the former into the Wannier basis [19],

2 1\ |2
Viu(R) = (L0, LR|V(R) |L0, L'R) = ¢? / &r / &3 |¢L°(r|)i |—S01ff|R(r ) (68)

Ui (R) = [ [ [oualo) ( / dgqe—iq“—f’w(q,w)) () (69)

where, for simplicity, we limited ourselves to density-density type of interactions, < ng.nry/-
For SrVOs, Figure 9 displays the resulting local (R=0), intra-orbital (L = L' € {1,2,3}; the
194 are degenerate) interaction matrix elements in the Wannier basis: the bare interaction V' € R,
the partially screened cRPA Hubbard U (w) and the fully screened RPA W (w), where the latter
two are complex at finite frequency. Looking at the static (w = 0) limits, we see that screening
with all electrons reduced the bare Coulomb interaction, V' = 16.1 eV, by more than one order
of magnitude, to W (0) = 0.9eV. The effective interaction for the ¢, setup is still sizeable,
U(0) = 3.5eV. From the inter-orbital matrix elements, we can further extract a Hund’s rule
coupling J(w=0) = 0.6eV.
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Fig. 9: Local interactions of the ty, orbitals of SrVOs: the bare Coulomb interaction V' (black
dashed line; top panel), the RPA fully screened interaction W (w) (blue circles; real (imagi-
nary) part in top (bottom) panel); the cRPA partially screened Hubbard interaction U(w) (red
squares). All interactions refer to the on-site density-density intra-orbital matrix element in the

tog-derived maximally localized Wannier basis. Increased screening contributions lead to the
hierarchy W (w=0) < U(w=0) < V.

The frequency dependence of U and W shares elements with the phenomenological plasmon-
pole interaction shown in Figure 6: On top of a particle-hole background, we see in U(w)
[W(w)] one [two] plasmon resonances. The dominant one at w =~ 15¢eV corresponds to plasma
oscillations that do not involve the V-3d orbitals. This is corroborated by the fact that, electron-
energy loss spectra (EELS: Im ¢~ !(w)) of SrTiO3 that nominally has one d-electron less, thus
none at all, find a peak at the same frequency [20]. Instead, the low-energy plasma feature in
W (w~2eV) must derive from oscillations of the ¢5, charge, as it is absent in U (w) in which ¢y,
transitions are omitted.

This concludes our brief description of the setting up of the cRPA-based effective low-energy
model, consisting of the one-particle Hamiltonian H?;,(k) and the interaction Uz, (w).

3.3 Caveats to how cRPA results are typically used

Here, we will not discuss critiques of the cRPA procedure outlined above, of which there are a
few [21-23]. Rather, we will briefly point out deficiencies and skeletons in the closet in the way
cRPA results are commonly used in, say, realistic dynamical mean-field theory (DFT+DMFT)
calculations.
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Dynamical interactions. Typically, DFT+DMFT simulations are performed with static inter-
actions U instead of dynamical U(w) ones. One might not have access to an ab initio computed
U(w). Also, impurity solvers that can work with retarded interactions are far less common and
more expensive. A frequent procedure then is to simply use the cRPA interaction in the static
limit U(w=0), in the case of SrVO;, U(w=0) = 3.5e¢V. However, it turns out that this inter-
action generates a mass enhancement far too small for simulations to match photoemission and
specific-heat measurements. So, in various studies, the “solution” was to ramp up the interac-
tion, in the case of SrVOs, to U = 5.0eV and mumble something about cRPA overestimating
screening. Then, for SrVOs, the effective mass enhancement, m*/m = Z ~1 x~ 2, comes out
nicely indeed. Using the fictitiously enhanced U, half of the quasi-particle weight (Z ~ 1/2) is
transferred to the Hubbard bands (cf. the chapters on DMFT in this book). But is this really the
correct physics? In the GIW model calculation in Section 2.8.2, we saw that a dynamical inter-
action (with a plasmon pole) caused a finite Z factor, Eq. (63), with spectral weight transferred
to a plasmon satellite. Instead of artificially inflating the static U, could the plasmon peak or,
generally, the frequency-dependence in U (w) supply the missing mass-enhancement? Casula et
al. [24], performing DFT+DMFT calculations with the ab initio U(w) from Figure 9, answered
this in the affirmative: They found the correct mass-enhancement as well has a lower Hubbard
band in better agreement with experiment.

Non-local interactions. So, are DFT+DMFT calculations with U(w) the ultimate answer?
Reality turns out to be more complicated. While the occupied part of the spectrum (accessi-
ble from photoemission) comes out well for StVOj3 using U(w), an analysis [25] of the empty
states suggests features are too close to the Fermi level. This time, the model calculation in
Section 2.8.1 comes to the rescue: While screening reduces the range of the bare Coulomb
interaction, the effective interaction experienced by the ¢, states is not strictly local (Hubbard-
like). Then, a screened exchange contribution to the self-energy will widen the bandwidth, cf.
Figure 5. With nominally 5/6 of the ¢,, states being unoccupied, the anticipated increase in
bandwidth will mostly be seen above the Fermi level. This insight is confirmed by GW [26]
and so-called GW+DMFT calculations [27] for SrVO; [25,28-33]. GW+DMFT combines
the merits of both, G (non-local exchange self-energy) and DMFT (dynamical local corre-
lations).'® From this vantage point, a provocative statement suggests itself [25]: The fact that
DFT+DMFT calculations using U (w=0) quite often do yield good results is owing to an error
cancellation, the joint omission of mass renormalization from a dynamical U (w) (— bandwidth
narrowing) and non-local exchange contributions to the self-energy (— bandwidth widening).

One does not fit all. When applying many-body methods, such as DMFT, to materials, great
care is taken to make the non-interacting part of the Hamiltonian as realistic as possible. Since
correlations typically amplify any sort of polarization, it is indeed important to know whether,

3Note that a frequency-dependent local interaction can also be generated when treating non-local, say,
nearest-neighbor interactions in the context of extended DMFT (EDMFT). For an instructive example using
GW +(E)DMFT, see Ref. [34].
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say, the ?, orbitals in a transition-metal oxide are degenerate (as in metallic STVO3) or not (as
in Mott-insulating YTiO3) [35, 36]. Besides structural distortions in the bulk, also geometric
constraints like a surface can lift degeneracies. For instance, in ultra-thin films of SrVOs, this
leads to a Mott-insulating state [37,38] and a rich, orbital-physics driven phase diagram under
doping [39].

The theoretical works cited in the preceding paragraph all used a static Hubbard U in their
DMEFT calculations. The additional caveat to mention here is that the same interaction was
applied to all the (Zo,) orbitals. This is common practice. However, the Wannier functions,
including their localization ({2 in Eq. (65)), will not be the same. Thus, already the matrix
element of the bare interaction, V' in Eq. (68), will differ from orbital to orbital. On top, the
screening will be orbital-dependent as well. These differences in the interactions may enhance
the degeneracy lifting in the non-interacting Hamiltonian. Or they could mitigate it.

The challenging truth is that correlated materials are extremely sensitive to minute details and
trends are difficult to predict without explicit calculations. For instance, the dependence of the
Hubbard U on external pressure or strain is highly-non-universal [40]: In the cuprate Bi,CuQO,
pressure decreases U [41], while it goes up when straining La,CuOy [42]. The fact that we are
able to point this out is actually a sign of the field maturing. With methods such as the cRPA
being available in more and more of the leading electronic structure packages, we are handed
the tools for more realism and, hopefully, more quantitative predictions.
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