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9.2 Xavier Waintal

1 Introduction

Feynman diagrams form an exact formal solution of quantum field theories and quantum many-
body problems in terms of a (huge) sum of (multi-dimensional) integrals of products of free
propagators (which are known). For a long time these diagrams were mostly used and studied
analytically. Countless articles are devoted to, e.g., analyze their structure or find subsequences
of diagrams that could be summed exactly and form an appropriate approximate solution of
the many-body problem in this or that regime. The idea to teach a computer how to calculate
these diagrams is of course very appealing. A particular route in this direction is known as “di-
agrammatic Monte Carlo” and can be traced down to, e.g., [1,2] for equilibrium and [3] in the
out-of-equilibrium context. Diagrammatic Monte Carlo combines two ideas: First, since calcu-
lating a Feynman diagram amounts to calculating a multi-dimensional integral, and since Monte
Carlo (e.g. the Metropolis algorithm) is the primary method for that, one aims at sampling these
integrals through a Markov process. Second, since there are a very large number of Feynman
diagrams (typically O(n!) for a calculation at order n), it is not possible to calculate them all so
one might as well use the Markov process for both integration and summing the diagrams. In
other words, in diagrammatic Monte Carlo, a configuration is a diagram with its set of vertices
(times and positions where an interaction event occurs) and the Markov process introduces a
random walk between different diagrams and different sets of vertices. The original version of
diagrammatic Monte Carlo had some successes but suffered from three difficulties:

e Problem A: The number of diagrams grows too fast with n, making it difficult to obtain
converged results beyond n = 6-7.

e Problem B: The integrands may oscillate (depending on the regime) and become in-
tractable through Monte Carlo. This is known as the “sign problem”

e Problem C: The expansion itself may not converge even if large values of n can be ob-
tained. This depends on the nature of the series (asymptotic, finite radius of conver-
gence...).

We will discuss these three aspects, in turn, in details. The present notes describe a set of
works [4-10] my collaborators and I did to address these problems in the context of quantum
nanoelectronics. There are no new results here, merely this is a high level view of what we did,
designed to be much less formal and more accessible than the original research articles. Among
the different authors, these notes owe much to my old partner Olivier Parcollet who has been
my constant collaborator on this topic. Most of the actual work, as often, has been carried out
by young researchers including (using time-ordering as is fit for a diagrammatic paper) Elio
Profumo, Corentin Bertrand, Marjan Macek, Philipp Dumitrescu, Matthieu Jeannin, Thomas
Kloss and Yuriel Nunez Fernandez.

The most urgent problem was Pb. A and it was also how we got started on the topic. In [4],
we found a way to group the n! diagrams into a much smaller sets of 2" determinants of nxn
matrices, dramatically reducing the complexity. This was done in the context of the Keldysh
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formalism suitable to treat out-of-equilibrium problems. A similar reduction in the context of
imaginary-time diagrams was found two years later in [11]. These developments made calcula-
tions possible up to n ~ 15 or so in the absence of a sign problem (Pb. B).

To calculate the resulting integrals (Pb. B) we took a somewhat circumvoluted path. We started
with Monte Carlo sampling as was done in diagrammatic Monte Carlo [4,5]. It became quickly
obvious that this was inefficient: the integrand was called typically 10° times in a practical
calculation (each call having a cost of up to O(2'®) floating-point operations for the largest
n = 15 that we could reach) but we did not take any advantage of the associated accumulated
information. An initial idea was that an approximation of the integrand could be learned along
the way (machine learning is the fashion). In turn, this approximation could be used to either
speed-up the Markov process (decrease its correlation time through smarter proposed moves)
or, as it turned out, obtain better convergence using low discrepancy sequences (better known as
quasi-Monte Carlo) [7]. We shall not follow this line of thought here because it was eventually
supplanted by a much better technique. Indeed, we found that the integrand could be learned di-
rectly using tensor network techniques and that the resulting tensor network could be integrated
exactly without any need for Monte Carlo [8]. Hence, the technique in its current form does not
use diagrams anymore and does not use Monte Carlo either. It is a sort of “Non-diagrammatic
Non-Monte Carlo” technique.

For the last problem (Pb. C), we took two different routes. The first was to consider the resum-
mation as an analytical continuation problem [4, 6] which was effective in some situations but
difficult to turn into an automatic technique (i.e. that works without human supervision). Here,
I will focus on our latest approach that uses “cross extrapolation” [9] and that is routed in the
same mathematics as our tensor network learning technique.

In the remaining of these notes, I will walk the reader through what I just described, i.e., describ-
ing the problem, then our technique to try and solve problem A, then problem B and ultimately
problem C. I will end by showing some actual data in the context of the out-of-equilibrium
Anderson model (SIAM), the main model for which we have had results at the time of this writ-
ing [10]. Our main success there was to be able to compute the differential conductance versus
bias and gate voltages “exactly” including its most prominent features, the “Kondo ridge” and
the “Coulomb diamonds”. By “exactly” here, we mean that the technique is controlled: it has
error bars that (i) are known and (ii) can be systematically improved by increasing the comput-
ing time (in contrast to, e.g., mean field techniques).

2 Problem formulation

2.1 General model

The type of models we want to study correspond to a finite interacting quantum nanoelectronic
system connected to infinite (metallic) electrodes, following the approach of Ref. [12]. The
Hamiltonian consists of a quadratic term and an electron-electron interaction term,

A~

H(t) = Ho(t) + Ui (t) (1)
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Fig. 1: Schematic of the overall approach. Starting from non-interacting Green functions, a
decomposition of the multidimensional integral is obtained using Tensor Cross-Interpolation
to compute the perturbative expansion, from which the physical observables Q(U,t) are recon-
structed as a function of interaction U and time t using cross-extrapolation. (Adapted from [10])

where the parameter U controls the magnitude of the interaction. The non-interacting Hamilto-

Z t)ele; 2)

where é;r (éj) are the usual fermionic creation (annihilation) operators of a one-particle state on

nian takes the form

the site 7.
(el ¢} =i 3)

The site index ¢ is general and can include different kinds of degrees of freedom: space, spin,
orbitals. A crucial aspect is that the number of “sites” is infinite so that the non-interacting
system has a well-defined density of states (as opposed to a sum of delta functions for a finite
system) while interactions only take place in a finite region. This will ensure the infrared con-
vergence of the various terms of the perturbation expansion while using a discretized system
provides ultraviolet convergence. So in contrast to quantum field theory where some diagrams
may diverge, here each diagram taken separately will be finite. The interaction Hamiltonian
takes the form

Hi(t) = ) Vi) €l€je,e, )

ijkl

In contrast to the non-interacting part, it is confined to a finite region. We also suppos that the
interaction vanishes for negative time and is slowly or abruptly switched on at t = 0.

2.2 Summary of the overall approach

Our goal is to perform a systematic expansion of some observable in power of U. For instance,
if we are interested in the occupation Q(U,t) of a given site io at time ¢, we will write its
expansion as,

Q. = (el e,) = ZQn . 5)

Our goal will be to first compute the coefficients ),,(¢) for as large a n as possible and then sum
up the series. A schematic of the method is shown in Fig. 1. It consists of three main steps:
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() solve the non-interacting model to obtain the corresponding non-interacting Green functions
(such as the lesser g;5(t) or upper g;;(t) Green functions that will be introduced below). (ii)
Calculating the coefficients ), (t) with high precision and (iif) resumming this perturbative
expansion.

The first step is carried out either analytically in simple models or numerically for more complex
geometries using, e.g., the Kwant [13] or Tkwant [14] software. Note that the non-interacting
Green function may already be out-of-equilibrium in presence of a bias voltage V.

The second step is to perform the actual expansion in powers of U. We shall see that this ex-
pansion gives an n-dimensional integral that contains 2" terms constructed out of products of
the non-interacting Green functions [4, 6]. We compute this integral using the Tensor Cross-
Interpolation (TCI) algorithm which vastly outperforms previous quantum Monte Carlo and
quasi Monte Carlo approaches for this problem [8]. A large fraction of these notes will be de-
voted to an introduction to TCI which has applications far beyond the present problem. See [15]
for an in-depth description of TCI. An associated open source library may also be found at
https://tensor4all.org. With this we will be able to calculate all Feynman diagrams up
to n = N with typically N = 20-25 for our example problem.

The last step of the method consist in reconstructing the function Q(U, t), if possible for both
short and long times ¢ and interaction strength U from the knowledge of only /V coefficients
Qn(t). The analytical structure of Q(U,t) is quite interesting: At any fine time ¢, it has an
infinite radius of convergence [5] since

th—f%czw%(e—m) . ©)
n.: n

which implies that N ~ O(Ut) terms are required to converge the sum using the finite sum

N
QU =Y Qu(t) U™ (7)
n=0

On the other hand, in the steady state ¢ — oo, it has a finite radius of convergence R and
Q) ~ 1/R"™ and the above naive summation fails for U > R. In other words, the two limits
t — oo and N — oo do not commute. Here, we will focus on one approach to perform the
reconstruction, the cross-extrapolation [9]. It is based on two ideas,

e First, using the naive sum we can obtain Q(U, t) in two different regimes

— Arbitrary times and small interactions U < R.

— Large interactions but small times (U ~ N/t).

To calculate Q(U, t) at both large t and U, it is therefore tempting to perform a double
extrapolation from these two limits simultaneously.

e Second, we will use the fact that Q(U, t) almost factorizes, i.e., seen as a matrix where U
are the rows and ¢ the columns, it is of low rank.

As we shall see, cross-extrapolation is a general idea that could be used in many other situations.
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Fig. 2: Top: electrical diagram of a quantum dot coupled to two electrodes. Bottom: schematic
of the SIAM. (Adapted from [10])

2.3 The SIAM model

Although the approach is in principle general, in practice we will demonstrate it for a concrete
model, the out-of-equilibrium SIAM. The model corresponds to a quantum dot, typically con-
structed by confining electrons with electrostatic gates inside a semiconductor or a semiconduc-
tor heterostructure. The quantum dot is modeled by a single interacting level (site : = 0) weakly
connected to two semi-infinite one dimensional electrodes (: < 0 and ¢ > 0, respectively) at
chemical potential /1, = £V}/2, as depicted in Fig. 2. Its Hamiltonian reads

400
H= Z Z (Wé;r,aéiﬂ,g + h-C-) + eq(By+ny) + U O(t) nyny (8)
i=—cooe{t,l}

where the former sites ¢ are now extended to include the spin 0 =7, | degree of freedom. ¢,
is the on-site energy on the dot controlled by an electrostatic gate and n, = ég’géoﬁ. We work
directly in the thermodynamic limit with an infinite number of bath sites. ©(t) is the Heaviside
function. The hopping between two neighboring sites is denoted by v; = 7, except for the
coupling to the dot 7y = v_; = 7. Energies are expressed in units of the tunneling rates to the
dot I" = 2+2 /7. For concreteness, all calculations are performed at zero temperature.

Our goal will be to calculate the charge () on the dot and the current / flowing from the dot to
the right electrode after an interaction quench at ¢ = 0.

QU = > (e ,&,) 9)
oe{tl}

108 = =ir 3 (€ &0,) = (€le10)] (10)
oe{t,i}
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3 Interaction expansion (problem A)

This section explains the first step of the approach: how to reduce the calculation of Q),,(¢) to a
multidimensional integral in terms of known objects.

3.1 A short reminder of Keldysh formalism

Our starting point for this work is a formal expansion of the out-of-equilibrium (Keldysh) Green
function in powers of electron-electron interactions. This is a standard step [16] which we
briefly sketch to introduce our notation. We would also like to demystify Keldysh formalism
which is much simpler than often thought to be. In our opinion it is actually conceptually sim-
pler than the imaginary-time or zero temperature formalism at the price of the actual calculations
being a bit more cumbersome. Since these calculations will be performed by the computer, this
1s not necessarily an issue.

One starts by the standard step of “integrating out” the (supposedly known) dynamics of Ho,
1.e., work in the interaction representation. Using the interaction representation, one defines
¢i(t) = Up(0,1)&;Uy(t,0) where Uy(t, t) is the evolution operator from ¢ to ' associated with
H,. For a time-independent H,, it is simply ﬂo(t’ 1) = e~ Mo(t' =) Tn this representation, one
defines Hi, (%), which is equal to Hiy(u) with the operators ¢, é} replaced by ¢,(u), é} (@).
Starting from a non-interacting density matrix pg at t = 0, the average of an observable O at
time ¢ is given by

<6> = Tr Te+ifdﬁUﬁint(ﬂ) 0 TefifdﬂUﬁint(ﬂ) ool , (11)

where 7' is the usual time-ordering operator (now necessary because in the interaction rep-
resentation the interacting Hamiltonian is time-dependent even if the original Hamiltonian is
not). The above equation is very natural; for instance if py = |Wy) (| then it corresponds
to (0) = (¥(2)|0¥(t)) with |¥(t)) = Te i/ UHinc(®) |} the state of the system at time ¢.
Looking at Eq. (11), we see that when we perform the expansion in powers of U, there will be
two kinds of terms: the ones coming before the operator O and the ones coming after it. To
remember if a terms originates from one or the other (before of after), one introduces an index
a = 0 (before) or a = 1 (after). This is the “Keldysh index” and that is all there is to it: the
Keldysh formalism is merely a technique for book-keeping the position of the different terms
in the expansion.

A bit more formally, one defines the contour ordering for pairs ¢ = (¢,a): (¢,0) < (¢, 1) for
all t,t/, (t,0) < (¢,0) if t<t’ and (¢,1) < (¢/,1) if t>t'. The contour ordering operator 7,
acts on products of fermionic operators A, B, C ... labeled by various “contour times” {4 =
(ta,aa),tp,tc ... and reorder them according to the contour ordering: 7. A(t4)B(tg) = AB
ifta>tg and T, A(t4)B(tg) = —BA if t y4<tp. The non-interacting contour Green function is
defined as

g5 (6 7) = —i(T.¢,(D)ek(T)), (12)
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where ¢;(1) is just ¢;(¢), the Keldysh index serving only to define the position of the operator
after contour ordering. The contour Green function has a matrix structure in a, @’ which reads

Tt ) gS(t,t
goi(t, 1) = ( gg( 1) gz%( : ,) ) (13)

9ij (t,t) 9ij (t, 1)

where g;(t, 1), g55(t,1'), g;;(t, ') and gg(t, t') are respectively the time-ordered, lesser, greater,
and anti-time-ordered Green functions. These non-interacting Green functions will form the
actual input of our approach, we will briefly discuss how they are obtained in the next section.
Finally, one defines the full Green function G (t,¢") with definitions identical to the above
except that Uy is replaced by U, the evolution operator associated to the full Hamiltonian H.
The fundamental expression for G, (, ') reads

G4 (1, 7) = —i(T. e U@ & (1)l (7)), (14)

where the integral over « is taken along the Keldysh contour, i.e., increasing v for a = 0 and
decreasing for a = 1. We are almost ready to perform the expansion.

3.2 Non-interacting Green functions

The dynamics of the non-interacting problem is, in principle, “trivial” in the sense that one
simply needs to solve the one-body problem and “fill up” the states up to the Fermi energy. In
practice it may not be entirely straightforward but there are well known and mature techniques to
calculate both the stationary [17] and time-dependent properties [18]. There are also associated
open source software such as Kwant [13] for the stationary problem and TKwant [14] for the
time-c{ependent one. The latter explicitly supports the calculation of g}; (t,t), g55(t, 1), g5 (t, 1)
and g/ (t,1).

One approach is to relate the non-interacting Green functions to the (Scattering) wave functions
in the system [18]

0.0 =15 [ G B 00 as

Here, « labels the various propagating channels of the leads, ¥,z (¢, ) the scattering state at en-
ergy E (in the electrode) and f,,(E) the corresponding Fermi distribution function. The greater
Green function g;;(t, ') is obtained by replacing the Fermi functions f(F) with f(£)—1. The
actual calculations performed in this article are restricted to a stationary non-interacting system,
where the above expression further simplifies to

g5 (=) —ZZ / 5= Jal B) Wi (DWW (j) e P01, (16)

Here again, the stationary scattering wave functions ¥, z(7) are standard objects [17]. They are
the eigenvectors of H, with one caveat: they need to be classified into states incoming from the
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left and states incoming from the right. These objects are in fact direct outputs of the Kwant
software [13]. Once the lesser and greater Green functions are known, one completes the 2x2
Keldysh matrix with the standard relations

Il

O
—~
~—
2
<
—~
—

_|_

o
—~
~—
=
<
—~
—

g5, 1) (17)
gLt 1) = Ot —t) g7 (t,t') + O(t—t') g5 (L, 1) . (18)

3.3 The expansion itself

We continue to follow the literature and perform the expansion in powers of U. We obtain

G;J,(t,t/):_ifﬁ%mﬂ_naﬂdur--dun<Tcﬁim<u1>ﬁim<u2>-- i (1,)¢, ()2)(7)
n=0 ’ {ai}
(19)

and we are left to calculate the non-interacting average of a (possibly large) product of creation
and destruction operators. This is done, as usual, using Wick’s theorem. Wick’s theorem states
that an average over a non-interacting density matrix of a product of fermionic operators takes
the form

(elesele, - ehey) =D (1)1 (e epn ) (€lepe)) -+ (Ehepnn) (20)

where the sum runs over all the permutation P of M elements, |P| = +1 is its signature and
P(a) the image of a through the corresponding permutation. The numbers 1,2, ... M are just
shorthands for all the parameters of the fermionic operators: sites ¢ (including spin), times u
and Keldysh index a.

This is where the numerical route starts to differ from the analytical one. Usually, one would
identify each permutation with a Feynman diagram and start do derive the corresponding Feyn-
man rules. But as already discussed, the problem is that we would have far too many diagrams
(there are M! permutations in the above expression). For numerical purposes, we will make a
simple remark: that the right-hand-side of Eq. (20) is actually the definition of the determinant
of a M x M matrix:

(eleehe, el e, = det(ele,). (21)

Since the calculation of the determinant of a M x M matrix takes only M? < M! operations,
this sounds very appealing. Now putting things together, we arrive at a formula that is con-
ceptually very simple: the left-hand-side is what we want and the right-hand-side is a set of
multi-dimensional integrals of matrices whose entries are known. The problem is therefore
“reduced to quadrature”

+oo .,

C T L n - Qg
G (t. 1) :ZEU > (-1 / duy -+ din Y Vit (W) Y Vijukat, (1) det ML,

n=0 ’ {al} Z1.71]€1l1 Zn]nknln
(22)
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Fig. 3: Left: Colorplot of the integrand of Qs as a function of the two times uy and us
for SIAM with pup=pr=0, £4=0, T'=0 and t=10. The four panels correspond to the four
possible values of the two Keldysh indices a, and ay. The explicit form of the integrand is
fuy, ug, ar,ay) = —Im(—1)2i% det My(uy, us, ay,as). Right: Same parameters as on the
left but the integrand has now been summed over Keldysh indices. The colorplot represents
flug,ug) = izal’@(—l)zi % det Mo (uq, us, aq,as) (f is real). Note that the integrand is now
real, positive and concentrated around u,=us=t. (Adapted from [4])

where the (2n+1)x(2n+1) matrix M,, is given by

Goi, (W, 01) gy, (U, 0) g, (T, ) o gg (T, 1)
Gioy (W) g5y, (U, ) gfg, (U, 02) - gp (U, 1)
Gniy (U2, U1)  gh,s (U, Ur)  Giy, (U2, ) - gf, (T, 1)
M, = : : : : (23)
Gieria (U, 1) glznjl (U, U1) Gheri (U, Ug) -+ glgnj (n, )
glcnz‘l (ﬂnv ﬂl) gfnjl (am al) glcnig (ﬂnv fa?) T gfnj (ana Zl)
95, (1) g5, (t, 1) 95, (t ) - g5 (L)

and the zeroth order term is g;(¢,#'). [Note that there was a typo in the above expression
in [4], see [5] for the correction]. To calculate an actual observable, we just recognize that it
corresponds to the lesser Green function at equal times, i.e.,

(U(0,t) ¢fe; U(t,0)) = —iG5i(t, t). (24)

We are just left with a simple problem: to obtain ),,(f) we must integrate over n times and sum
over n Keldysh indices (in general we also need to sum over the n different vertices V;;i; but
in the case of SIAM, this sum reduces to a single term). There is a caveat however. To see it,
let us look at the integrand of ()5 in the 4-sectors defined by the two Keldysh indices, as shown
in the left panel of Fig. 3. We immediately see that the corresponding integrals are not going
to behave well: the integrand does not seem to decay when the time gets away from the time
where the measurement is made (reminder: we switch on the interaction at { = 0 and measure,
here, at t = 10). This is to be expected and is why the determinant form of the Wick theorem
was not super successful before: the expansion includes all Feynman diagrams, including the
disconnected diagrams. It is well known that these disconnected diagrams do not contribute to
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the final result. Yet, in this expansion they are present and a priori only cancel at the end of the
calculation after integration and summation over Keldysh indices.

The magic occurs when one performs the summation over the Keldysh indices, as shown in the
right panel of Fig. 3: we find that the cancellation of the disconnected diagrams occurs before
the integration over times. The proof is a bit technical and is shown in the appendix of [4]. The
consequence of this property is that, one is left with a well behaved integral to calculate. The
cost of each call to the integrand is O(2") which is still exponential but very mild compared
to the initial n! cost we started with. To calculate these integrals we will use Tensor Cross
Interpolation, which we now explain.

4 Tensor cross interpolation for integration (problem B)

We will now discuss a very important algorithm — Tensor Cross Interpolation (TCI) — that
has a very special place in the zoo of tensor network algorithms. This algorithm takes as an

input a “virtual” tensor F, where each index o; takes d; different values (for simplicity

1,02,.-,0N
we assume that d; = d is constant). It returns as an output a Matrix Product State (MPS) that
approximates Fj in the best possible way. For an introduction to MPS, see [19]. For the purpose

of this article, the MPS is merely the following expression

01,02, HON NZMI 01 M§1a2< ) "M(iVN_1<O-N)7 (25)
{ai}

where the matrices M, (o) have a maximum size y, known as the bond dimension. Fj is virtual
in the sense that the input of the algorithm is not the actual tensor (which would be an expo-
nentially large object with d”¥ elements). Rather it is a function that takes & = (01, 09, ...,0N)
as an input and returns the corresponding value Fj;. TCI is very different from many other
tensor network algorithms (e.g. DMRG [19]): here F} is actually known by the user, what is
not known is its MPS representation. Once one has this MPS, one can use it for calculating,
e.g., integrals or plenty of other applications that we shall not discuss, see [15]. TCI is really a
“gateway” that allows one to take a problem that is not formulated in terms of tensor network
and transform it into this framework.

Another peculiarity of TCI is that it is a learning algorithm akin to what is done in machine
learning. More precisely it is an active learning algorithm since TCI decides on the data (&, Fz)
that will be requested. As in machine learning, only a very tiny fraction of the possible con-
figurations ¢ will be explored, and as in machine learning the fact that the resulting model
interpolates correctly between the configurations can be spectacular. On the other hand there
are strong differences with deep neural networks: the optimization has nothing to do with gra-
dient descent (and is way more effective) and the resulting function much more structured (for
instance we can easily calculate, e.g., integrals, we cannot do that with a neural network). The
cost for these added features is a more restrictive set of applications: TCI is only effective for
problems where the level of “entanglement” is limited (small ).
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The presentation below is mostly based on section III of [8] with a few more advanced aspects
borrowed from [15] to which we also refer for the references to the original literature. The read-
ers can also have a look at the tensor4all open source library that implements these algorithms
https://tensor4all.org.

4.1 Compressing low rank matrices

Before we can get into TCI, we need a matrix factorization formula for low rank (or approxi-
mately low rank) matrices that is based on Gaussian elimination and the concept of the Schur
complement [20]. This formula (the “cross interpolation”) will be almost as good as the Sin-
gular Value Decomposition (SVD, which is optimum) but with a key advantage: it can be
performed without the need to access the full matrix A: only a set of y rows and columns will
be needed.

4.1.1 Revisiting Gaussian elimination

We consider an arbitrary matrix A that we put in a 2x2 block form,
A Ap
A= (26)
<A21 Agg
Following the strategy of Gaussian elimination, we can put this matrix in triangular form as
(provided the A;; block is invertible)

1 0\ (A A\  [An Ao
1 = 1 . (27)
—An Ay 1) \Aar Ag 0 Agp—AnAj A

We can proceed on the columns to eliminate the A;, block and finally obtain

1 0\ (An A\ (1 —A7Ap\  [A; 0 28)
—Ap A 1) \ Ay Axn) \O 1 0 Agp—AnA AL

This equation will play a key role in multiple places. The quantity Agy — Ay A A1y = [A/A1]
will also appear over and over and we shall therefore give it its name: it is called the Schur
complement [A/A;;] of A with respect to the 11 block. The block triangular matrices can be
trivially inverted and we arrive at a “block L DU decomposition A = LDU in terms of a block
lower triangular L, block diagonal D and block upper triangular matrix U

A A\ 1 0\ [An 0 1 AlAp 29)
Ay Ay A AT 1 0 [A/An]) \oO 1 '

Among the various corollaries of this equation, it provides a close form for the determinant:
det A = det[All] det[A/Alﬂ (30)

The Schur complement has many other nice properties, see [15] for a discussion. For instance
one does not need to take the Schur complement directly with respect to en entire block Ay,
one may do it sub-block after sub-block and if one does so, the order in which one takes the
Schur complements does not matter.
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Fig. 4: Illustration of the cross interpolation (CI) of a matrix. The large red triangles indicate
real pivots and the smaller red triangles indicate automatically generated pivots. The right-
hand side only contains small subparts of the matrix. (Adapted from [8])

4.1.2 Cross Interpolation

The cross interpolation formula approximates A =~ Ay, where Ay is defined as

A
Act = All (An)*l (An A12>- (€29)

21

In other words, the Schur complement is the error of the cross interpolation,

0 0
A=A . 32
cr + 0 [4/An] (32)

An important remark is that to construct Ay, one does not need to know anything about Ass.
Indeed, when a matrix is of (low) rank , we only need x independent vectors (the first matrix
in the definition of A¢;) and x rows (which tells us how the other vectors decompose in terms
of the independent ones). The cross interpolation formula has two important properties: (i) first
it is exact when evaluated on the blocks that have been used to construct it (A;;, A2 and A;s)
as evident in the above equation. We refer to this as the interpolation property. (if) Second it
is exact if Ay is a xyx y matrix and A is exactly of rank y. To prove this second assertion, we
construct the sub-matrix of A that contains the 11 block plus a single extra row i, and a single
extra column jy. Using the Schur complement, we have:

A Ay,

det
Aiol Aiojo

= ’det AH{ X ‘Aiojo_AiolAl_llAljo" (33)

(with a slight abuse of notations that mixes indexing with block indexing). The left hand
side is zero by definition of A being of rank x (it is a (y+1)x(x+1) matrix) hence A

0jo
Ai01A1_11A1j0 = 0, i.e., the cross interpolation is exact.
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Fig. 5: Error ’Aij—[ACI]ij‘ versus i and j at different stages of the Cross-

Interpolation for an MxM matrix with M= 20. In this toy example, A;; =
. 4 . . i/M
<z/11{/1—M+1> (14eG/AD?) [1 + (j/M) cos(j/M)e” 9™ <i/M)+1}. The red dots indicate the piv-

ots. The x and y axis have been rescaled to be in [0, 10]. (Adapted from Jeannin et al. [10])

4.1.3 Practical cross interpolation

In practice to build up Ac; we need to choose the A;; block properly. Let us introduce the
notation that we will use to design the chosen rows and columns. Let Z = {iy, i3, ...,%,} (re-
spectively J = {Jj1, ja, - - - , jx }) denote a list of the rows (columns) of A (that will form the A,
block). Indexing these sets gives the corresponding index: Z, = i, is its a™ element. The list of
the indices of all rows (columns) is denoted I = {1,2,..., M} (J = {1,2,..., N}). Follow-
ing usual programming convention (as in Python/MATLAB/Julia), we denote by A(Z, J) the
submatrix of A comprised of the rows Z and columns J; A(Z, J ) = Az, 7,- We have

A= A(LJ) (34)
Act = A(LT)AZ, J) " A(Z, ) (35)

Equation (35) is illustrated graphically in Fig. 4. The rows and columns of A(Z, J) are called
the pivots and A(Z, J) is the pivot matrix. The pivots are chosen one by one iteratively in such
a way as to maximize the determinant of the matrix A(Z, J) = Aj; in order to guarantee that
the chosen vectors are truly independent. This is known as the maximum volume (maxvol)
principle. Another way to look at the maxvol principle is that each new pivot is chosen to be
the one where the current error of Ay is maximum (maxerror) so that adding this pivot brings
the largest amount of new information into the approximation. The proof of the equivalence
between maxvol and maxerror is in Eq. (33). A practical example of how the error decreases
for the cross extrapolation of a (toy) matrix is shown in Fig. 5.

The important thing to remember about cross interpolation is that it is given in terms of slices
of the matrix A: it is entirely defined in terms of the two lists Z and .7 of the rows and columns
of the pivot matrices.
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4.1.4 Stable evaluation of the cross interpolation

We need a last ingredient to be able to use cross interpolation in practice. Indeed, as one adds
more pivots, the A;; matrix becomes increasingly singular so we do not want to calculate A}
explicitly as it becomes numerically unstable (even for moderate values of ). There are several

All -1
A . 36
<A21> (A1) (36)

The first is to perform a () R factorization of the first matrix, writing

A (Qu
<A21> = (%) i ©7

The () matrix being an isometry, it is well conditioned. All the (possibly very small) singular

ways to stabilize the evaluation of

values of Ay are in the triangular matrix R which disappears from the calculation. Indeed, we

AH -1 1
<A21> S (QMS)' %)

The second way to stabilize this calculation (now our preferred way) is to realize that Eq. (29)

A Ap An Arg 0 0
= _ + 39)
<A21 A22> (Am A21A111A12> (0 [A/An])

in other words, if one ignores the Schur complement one is left with the cross interpolation,

have

can be rewritten as

Eq. (32). We can use Eq. (29) iteratively, performing the decomposition pivot after pivot (as
stated above, this is legit, the proof can be found in [15]) building a decomposition in the form
Act = LDU where L is lower triangular, D diagonal and U upper triangular. This is nothing
but the celebrated LU decomposition used for, e.g., inverting matrices. The only caveat is that
it is partial (we stop it after getting the y pivots, we do not go all the way through) and it is rank
revealing (we use the maxvol criteria to select the pivots). It is the prrLU (partial rank revealing
LU) decomposition. But again, this is just a neat way to obtain the cross interpolation in a stable
way.

4.2 TCI: Extension of CI to n-dimensional tensors

We now have everything we need to factorize matrices, we need to extend cross interpolation to
tensors. This is what TCI does.
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4.2.1 TCI: naive approach

We can decompose any tensor using cross interpolation iteratively. We first group together all
indices except o1, apply cross interpolation on the resulting matrix and repeat the procedure
until the tensor has been entirely factorized. Graphically this (very naive) algorithm has the
following form:

where the small blue squares stand for the inverse of the pivot matrices. This algorithm is not
practical since applying cross interpolation on an exponentially large matrix requires an expo-
nentially large amount of memory and computing time. However, it has the merit of showing
that such a decomposition exists. More interestingly, it shows the structure of the “pivots” of
a TCI representation. Indeed, the cross interpolation is defined in terms of the lists Z and J.
Now we have one of such list on each side of the pivot matrices (the blue squares above). Each
element of this list is now a list itself that contains the value of the corresponding indices. We
call such a list a multi-index. More explicitly, we have for our example,

O3
,={(c,050,), ..} ——
L,={(cy),..} ——

SF)
i={(o30,),..} ——
lL,={(c, 0,),..} ———

O3
I,={(c,),.} ——
l;={(c, 0, G35),..} ——

O,

The most tricky thing about writing a TCI code is to correctly do the book keeping of these lists
of lists.

4.2.2 TCI: formal form

Let us introduce our notations a bit more formally. A TCI representation is essentially a MPS
but we keep the pivot matrices explicit so that the TCI is entirely made of “slices” of the original
tensor. For any « such that 1 < o < N, we consider “row” multi-indices (01,09, ..., 0,) and
“column” multi-indices (04, 0441, - - ., 0n). The pivot lists are defined as Z,, = {i1, 42, ...,%,}
for the “rows” (the multi-indices have size o) and J, = {j1,J2,.- .,y for the “columns”
(the multi-indices have size N —a+1). For notational convenience, we define Zy and Jy.1 as
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singleton sets each comprised of an empty multi-index. Last, we use the symbol & to denote
the concatenation of multi-indices

(01,09,...,00-1) ® (04) ® (Gas1,.--,0n) = (01,...,0N). (40)

We are now ready to define the TCI representation formally. The definitions are a bit scary
looking but they are nothing else than what we obtained above using the naive algorithm. The
blue squares are the pivot matrices F, defined as,

[Pa]ij = F[Ia]iEB[JaJrl]j (41)
(with Py=1 for notation convenience). Likewise the orange three leg tensors 7, are defined as,
[Toé]in = F[Ia—1]¢®UEB[Ja+1]j' (42)

We also introduce the matrix 7, (o) defined as
Ta(U)ij = [Ta]iaj (43)

to make contact with the standard MPS form. Using these notations, we have,

N
Fs ~ [Fra)s = [ [ Ta(oa) Py (44)
a=1

or graphically

G, G, O3 Oy G, G, Cs o,

The TCI representation is defined entirely by the selected sets of “rows” and “columns” Z, and
Ja» s0 that constructing an accurate representation of £z amounts to optimizing the selection of
T, and J, for 1<a<N. Only O(Ndx?) < d" entries of F are used in the approximation.

4.2.3 Practical TCI algorithm

We start with an initial point (o4, . . ., 0,,) which we splitin N —1 different ways (o4, ...,0y) =
(01,...,04) @ (0a41,...,0n) to obtain one element for each of the sets Z,, and 7,,. This yields
the initial x = 1 TCI, which is exact if the tensor £ factorizes as a product of tensors of one
variable.

To improve on this TCI, we are going to sweep over pairs of tensors (7,,,7T,.1) as is done
in two-site DMRG. The sweeping is performed until convergence. For each pair, we use the
following procedure: First, we introduce yet another tensor, /1, as

Uoivo'j = FiTo_1)i@0@0c'®[Tasa; - (45)

Second, we replace [T, (04) Py Toi1(0at1)] ;; inside the TCI by [I1,]
mer is a cross interpolation of the latter, hence we might as well use the more precise form.

; because the for-

7:0'a0'0+1

Next, we continue the cross interpolation of 11, (seen as a matrix [/1,};0.0/c;) by adding a new
pivot, i.e., one new entry to the list Z,, and 7, ;. Graphically, we have
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and that is it; this is a fully functional TCI algorithm (although there are versions that are
more suitable for certain purposes). During the sweeping, we monitor the so-called pivot error
between the I/, tensor and its cross interpolation. We stop the iteration when this error is below
a certain threshold during an entire sweep

€7 = max
ioo’j

(46)

(Moot — [Ta(0) Py Toia (0]

ij| "

Now, there is a subtle point that we have swept under the rug: the fact that the error €57 is
actually the error of the TCI approximation for the corresponding pivots,

€1 = max | Fiz. 0000/ ®(Taral; — FrCZa-1idosoelTasal; | - 47
Therefore improving the cross interpolation of I/, does indeed improve the TCI approximation
itself (at least for these pivots). To prove this point, we need to remember that the cross interpo-
lation is exact on the pivots. We also need to realize that there is a form of “nesting condition”
that connects the different pivot lists: a pivot i, € Z, takes the form i, = 7,1 ® 0, with
ta—1 € Zy—1 (and a similar condition for the 7,). Using these two ingredients, one easily sees
that there is a telescopic condition for the restriction of the TCI on these pivots.

Let us see how this works concretely. We start by restricting o, to values that belong to Z;. For
these values, 77 and P, cancel due to the interpolation property. Schematically, it reads

o, inly
5 o,inly
|

G, G,
13 I3
l, 1,

G3 G3
Iy Iy
Iy Iy

64 64

We continue by requesting that 0, @ o, € Z, which we can do because of the nested condition.
The interpolation property implies that
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and we can continue like that down the TCI representation. Since the same thing can be done
with the 7, we can also go up from the bottom of the TCI. See [8] or [15] for a more formal
proof of the statement.

4.2.4 Application to integrals

There are many things that one may do with a TCI representation. As stated, it is an entry
point to be able to use the many algorithms that have been developed for many-body physics.
For the purpose of these notes, we are interested in multi-dimensional integration. It is an
alternative to the Monte Carlo approach. When it works (the convergence with y will depend
on the integrand), it compares very favorably to Monte Carlo in two aspects: (i) the convergence
1s much faster than what is allowed by the law of large numbers; (ii) it is immune to the sign
problem that plagues Monte Carlo whenever the integrand has an oscillatory behavior.

In its plainest version, multi-dimensional integration is quite straightforward. Let us consider
a function f(uy,...,u,) (our integrand). We discretize it using a plain quadrature rule with
d points per dimension ag, ..., aq and the corresponding weight wy, . .., wy. For instance, we
could use the Gauss-Kronrod-21 rule (with d = 21) or even the trapezoidal rule. We write

/dul---dunf(ul,...,un)z D Frwg, -+ woy (48)
with
Fy = f(doy, -, 00,)- (49)

The problem, of course, is that the sum runs over d" different configurations which is imprac-
tical. This is known as the curse of dimensionality. If, however, we can factorize F; using
TCI, then calculating this sum reduces to n matrix-vector multiplication. It becomes essentially

> Frwg, - w,, ﬁ > T.(o)P; . (50)

01 0On a=1 o

trivial

This is essentially what we do to calculate our coefficients (),,. There is a small difficulty that
we will not discuss in details though: we do not perform TCI f(us, . .., u,) (whose rank is very
high) but rather f(uy, ug—uy, ug—us, . .., U, —u,_1) (Whose rank is much smaller). The reason
is that the later function automatically enforces time-ordering — or, more precisely, works in a
single sector of the ordering (see the corresponding discussion in [8]).
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Fig. 6: Coefficients of the expansion. Absolute value of the coefficients (Q,, as a function of time

for the charge (¢4 = 0). Red (blue) portion of curve corresponds to positive (negative) values
of Qn. At large time Q,,(t) reaches its known exact value (calculated with Bethe ansatz) with
high precision. (Adapted from [10])

5 Summing up the series (problem C) and results

We are now in position to actually calculate these coefficients ),,(¢). An example of the typical
raw data coming out of such a calculation is shown in Fig. 6 up to order eighteen. Please
note the span of the x and y axis: times span four orders of magnitude while the coefficients
themselves span almost ninety orders of magnitude. The final result (at infinite time) is correct
in this instance with close to eight digits precision. These results are orders of magnitude more
precise and faster than what was obtained with previous techniques. We have a last problem to
solve (problem C) before we can turn to do a little physics.

5.1 Cross extrapolation

Due to the convergence properties of the series of (U, t) we can only calculate it accurately
in two regimes: small times (but up to large U) and small U (but any ¢). We would like to
extrapolate our results up to the interesting regime where both ¢ and U are large. Let us first
discretize U and ¢ to get a matrix @);; = Q(U;, ;). Only a few first rows and columns of this
matrix are known.

The cross-extrapolation algorithm [9] is a deceptively simple idea: one merely applies the cross-
interpolation formula to the matrix ();; taking advantage of the fact that the formula does not
use the entire matrix. The only difference with what was done in the context of TCI is that one
restricts the choices of the pivots to the known sector of the matrix (the A;; block). This is
illustrated in Fig. 7 for a toy example. This is the same matrix as in Fig. 5, the only difference is
that we supposed that the data inside the white square was inaccessible, hence we had to restrict
the choice of the pivots to inside the red square. The convergence is not as fast or as stable as in
a regular cross interpolation, this is to be expected, but in many instance the method works well
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Fig. 7: Relative error of the cross-extrapolation versus i and j for a toy matrix and different
number of pivots x = 1 — 6. The pivots can only be placed inside the red square in order to
extrapolate the results inside the white square. (Adapted from [9])

and allows one to extrapolate the data further than the initial calculation provides. The error is
controlled by varying the rank y of the extrapolation and the size of the red square region. As in
all extrapolation, there is an underlying assumption that must be checked: the fact that Q(U, t)
is approximately low rank or in other words that for an error level e, there exist a set of x one
dimensional functions g, and h;, such that

X

QL) =D gu(U)hi(1)] < e. (51)

k=1

The approach is very general and could in principle be used in many different situations. For
instance in Fig. 8, we use it to extrapolate an image whose upper right corner is missing.

out: x=1 X=2

Fig. 8: Example of cross extrapolation for an image (left) whose upper right corner is missing
(reddish zone). In this instance, it does not work so well. (Adapted from [9])
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Fig. 9: Final result of the calculation after cross extrapolation. Upper panels: color plots of the
current versus bias voltage Vy, and gate voltage 4 for the SIAM. The diamond like shape shown
is known as the “Coulomb diamond” Middle panels: same data but the differential conductance
is shown. the horizontal red line around Vi, = 0 is known as the “Kondo ridge” and its width is
the Kondo energy. Bottom panels: a few horizontal cuts of the same data. (Adapted from [10])

5.2 Main results in the stationary limit

We are now done with the technique itself, it is time to see what it can do in practice and discuss
a little the physics of the SIAM. We cannot do justice to the SIAM here. The model is very well
understood at equilibrium. It is one of the very few correlated models that is both non-trivial
(among other things it features the Kondo effect, hence an emerging energy scale) and very well
understood (through Bethe ansatz, the numerical renormalization group, and more). Calculating
its properties out-of-equilibrium though is harder and results in this direction are more recent.
On the other hand almost all experiments measure current-voltage characteristics, hence take
place out-of-equilibrium (see the introduction of [10] for references). So for a long time we
were in a semi-comfortable situation where we understood the underlying physics but could
not actually calculate the observables that were measured. The present technique contributed
to bridge this gap. Fig. 9 shows a snapshot of the results of the calculation featuring both the
“Coulomb diamonds” (upper panels) and the “Kondo ridge” (middle panels), two features that
have been observed over and over experimentally. Actually, calculating the Coulomb diamond
does not require such a sophisticated technique, it can be perfectly well understood at the semi-
classical level. Yet, it is nice to obtain the entire colormap observed experimentally with a single
technique and in a controlled way.

Let us finish by pushing the technique to its (current) limits which is to calculate /(1}) in the
middle of the Kondo ridge at U = 12. We are going to span three orders of magnitude in bias



Tensor Trains 9.23

S

=
E

c

[l ettt Tt L

100_

-~

N

10—1-

0
Vp
Fig. 10: Current I as a function of Vi, at U = 12. The dashed lines indicate the position of the
energy scales discussed in the text. The grey lines correspond to perfect transmission [ = V),

and a plateau at I = Tx(U). N = 23 coefficients were used. The Kondo temperature was
extracted from Bethe Ansatz. (Adapted from [10])

o [ ST P, L) S PP X

=
ol

10-1

=

voltage and cross four different energy scales:
e The largest one is the charging energy U. For V}, > U the current must saturate.

e The scale v/ I'U is associated to the fluctuations of the charge. For energies smaller than
this scale, the charge can be considered as “frozen” and the problem reduces to its spin
sector (i.e. essentially to the so-called Kondo model).

e The width " of the non-interacting resonance.

e The Kondo temperature 7. This scale is what makes the whole problem interesting. T
decreases exponentially with U. For V}, < Tk one expects perfect transmission I = V},
(in units where ¢?/h = 1).

The results are shown in Fig. 10. We find the expected regimes at small and large bias voltages.
For T'x <V, < I', we observe a sort of plateau, that still needs to be confirmed given that the
error bars are fairly high in this regime.

5.3 What is to take away?

I would like to end with a few comments as to where this is going. We have seen a technique that
consists of several subtechniques (non-interacting Green functions, Wick determinants, tensor
cross interpolation, series reconstruction) which put together allow to solve a quite challenging
problem. None of these techniques are very difficult once someone has taken the trouble to
write a proper open source code that properly isolates the corresponding functionality. This is
perhaps my first comment: open source code and proper API are key to being able to assemble
complex solutions. We need to be able to program at a level of abstraction that is close to the one
we use to think about the problem. My second comment refers to TCI. Finding an underlying
structure of the problem to be able to solve it has always be central to how physicists work.
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What I find amazing with TCI is that this algorithm is able to discover this structure for us. This
is generally true of learning algorithms including with deep neural networks and it is a major
paradigm shift in the way we think about algorithms. My last comment is about the overall idea
of teaching the computer to calculate Feynman diagrams. At the time of this writing it is not
clear how far we will be able to go in this direction but I am quite awed by the number of radical
speedups and paradigm shifts that we have seen since our first paper on this subject ten years
ago. More generally, it seems that the field of computational many-body physics as a whole is
moving very quickly these days and I would not be surprised if some of our central problems
(say calculating the properties of the 2D Hubbard model) would soon switch from “about to be
solved” to “solved actually”.
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