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10.2 Philipp Werner

1 Introduction

Quantum impurity models play an important role in nanoscience as representations of quantum
dots, and in condensed matter physics as auxiliary systems, whose self-consistent solution pro-
vides the dynamical mean field theory (DMFT) [1] description of lattice models. A quantum
impurity model describes a system with a finite-dimensional Hilbert space (“dot”), which is
coupled to one or several infinite but noninteracting systems (“baths”). The equilibrium prop-
erties of quantum impurity models are by now reasonably well understood theoretically, and in
many cases the properties of interest can be computed numerically to high accuracy.

The nonequilibrium properties of quantum impurity models are much less understood, but they
are relevant in connection with transport studies on quantum dots [2] and the DMFT descrip-
tion of pump-probe experiments on solids [3]. Different protocols can be considered to drive a
quantum impurity model out of equilibrium. If a system is coupled to more than one reservoir, a
chemical potential or temperature difference between the reservoirs can generate a nonequilib-
rium steady state in which current flows from one reservoir to another across the dot. One can
also consider the relaxation to a steady state from an atypical initial condition (‘“quench”). In the
DMEFT context, the nonequilibrium reservoirs are selfconsistently computed and represent the
lattice environment during the transient evolution of a perturbed system [4], or in a nonequilib-
rium steady-state situation [5]. While the basic formalism for dealing with these problems was
established by Schwinger [6] and Keldysh [7] in the early 1960s, the calculation of unbiased
results for generic nonequilibrium situations remains a challenge.

Several numerical techniques have been applied to time-dependent problems in interacting
quantum dots. Numerical renormalization group methods [8] provide accurate results for the re-
laxation dynamics in dots with equilibrium baths. Path integral sampling techniques introduced
in the quantum chemistry context [9] have been extended to the quantum dot problem [10]
and recent powerful implementations make use of a tensor-train representation of the influence
functional of the bath [11, 12]. The time-dependent non-crossing approximation [13] and its
higher-order generalizations [14] allows an efficient treatment of the strong-correlation regime,
but the correct description of Kondo resonances or weakly correlated states remains a chal-
lenge. The time-dependent density matrix renormalization group has also been used to study
the transport properties of quantum dots coupled to one-dimensional reservoirs [15, 16].

In this chapter, we discuss quantum Monte Carlo (QMC) methods based on the unbiased sam-
pling of diagrammatic expansions [17]. For equilibrium properties, these so-called continuous-
time QMC methods enabled numerically efficient studies of a wide range of impurity problems,
and their adaptation to the real-time contour yields potentially useful solvers for quantum dot
studies and nonequilibrium DMFT. We provide a systematic analysis of the real-time dia-
grammatic approach, including a discussion of the strengths and weaknesses of these methods,
and the regimes in which accurate results can be obtained. We also briefly discuss alternative
schemes which avoid the sampling of disconnected diagrams, as well as recent developments
which replace the Monte Carlo sampling of diagrams by an efficient explicit calculation of the
integrals over diagram weights. The QMC part is taken from Refs. [18] and [19].
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2 General formalism and model

2.1 Weak- and strong-coupling approach

A quantum impurity model is described by a Hamiltonian of the form
Hgr = Hyot + Hyan + Hpix. (D

Here Hgyo describes a system with a finite-dimensional Hilbert space, which we refer to as the
“impurity”, or “dot”, Hy,n describes one or more infinite reservoirs characterized by a contin-
uum of levels, and H,;x the coupling between the impurity and the reservoirs. We assume that
at time ¢ = 0 the state of the system is described by the density matrix p,.

The theoretical task is to evaluate the expectation value (O(t)) of an operator O at time ¢, i.e.

to compute
<O(t)> =Tr [po Glfot dt'HQI(t’)Oe—ifg dt"Hgr(t") (2)

(the generalization to operators with multiple time dependences is straightforward and will not
be written explicitly). A nonequilibrium situation can arise through a time dependence of the
parameters in Hg; (“irradiation”), through the correlators of the operators in Hp,p, (“nonequi-
librium reservoirs”) or through an initial density matrix po which is different from the long-time
limit (“quench”).

One can view the expectation value in Eq. (2) as an evolution on the Schwinger-Keldysh con-
tour illustrated in Fig. 1 from time ¢ = 0 (when the system is described by the density matrix
po) to time ¢ (at which the operator is measured), and then back to time 0 [6]. Our general
strategy for evaluating Eq. (2) is to write Hg; as a sum of two terms: one, H for which the
time evolution can be treated exactly and another, H;, which is treated by a perturbative expan-
sion. The expansion in [; generates a series of diagrams, which are sampled stochastically,
using an importance sampling which accepts or rejects proposed diagrams on the basis of their
contributions to (@) (in the discussed implementations we use 0= 1).

Two types of expansion are considered: One is a “weak coupling” method, in which Hgy is par-
titioned into a quadratic part H fi)ot and an interacting part H;, the combination H got—i-H mix + Hpath
is treated exactly, p, is taken to be the corresponding density matrix, and the expansion is con-
structed in terms of Hy. The other is a “strong coupling” (more properly, “hybridization”)
expansion in which Hyy and Hy,g, are treated exactly, pg is the density matrix corresponding

tki S tk2 S, tks S3
A | A
| v |
Po |
0‘ —t
t
tis Ss txa Sy

Fig. 1: Illlustration of the Schwinger-Keldysh contour and example of a Monte Carlo configu-
ration corresponding to perturbation order n =5 and n, = 3, n_ = 2. (From Ref. [18])
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to the direct product of a lead density matrix and a density matrix describing the dot decou-
pled from the leads, and H,,, is treated as a perturbation. The hybridization expansion for
nonequilibrium problems was originally introduced by Miihlbacher and Rabani [20] in the con-
text of noninteracting electrons coupled to phonons, and has been applied to interacting dots in
Ref. [21]. An essentially identical formalism has also been discussed in Ref. [22]. The real-time
version of the weak-coupling approach was introduced in Ref. [18].

Methods based on stochastically sampled diagrammatic expansions [23-26] have had consid-
erable success in treating equilibrium quantum impurity problems at temperature 7' > 0 and
they have become the main workhorse for DMFT [17]. In equilibrium calculations, the expan-
sion can be formulated on the imaginary time axis 0 < 7 < 1/7 (only one contour is needed)
and the expansion parameter is —H;(7) = e™°(—H;) e "0, The fermionic sign problem
can be avoided in many relevant situations, so that average perturbation orders of O(100) can
be easily treated. Three related sources of difficulty arise in nonequilibrium setups. First, the
expansion must be done for real times, so the time evolution introduces complex phases and
the diagrams come with factors of ¢ to powers relating to the perturbation order. Second, two
contour branches rather than one are required (Fig. 1), doubling the perturbation order required
to reach a given time. Third, in nonequilibrium situations it may be essential to build up the
correct entanglement between the impurity and the bath before observables can be measured.
All of these factors limit the range over which accurate results can be obtained, but the crucial
constraint is the dynamical sign problem resulting from the oscillatory convergence.

2.2 Model

In the following discussions, we consider a dot consisting of a single spin-degenerate level with
a Hubbard interaction U, coupled by hybridization V' to two reservoirs (‘“leads”) labeled by
a = L, R, which can have different chemical potentials fi,.

The different terms of the Hamiltonian are

Hoan = Y Y (e —pa)ashas,, 3)

a=L,R p,o
= 3 Y (e, +he), 0
a=L,R p,o
Hyy = (2a1U/2) > 1o (5)
Hy = U(nd,¢nd,¢ — (nd7T+nd7¢)/2). (6)

Here, d,, (a; ) annihilates the spin-o electron on the dot (spin-o and lead-« bath electron with
index p), ng, = df,dg is the spin-density on the dot, and ¢, (¢, ,) denotes the dot (bath level)
energy. For convenience, we also define

Hoot = Hgy + Huy. (7
The initial density matrix is such that the correlators of lead operators are

<az.t7a§ o’ > = 6047/55 p.p’ O’O’ fTa( pa ,Ua) (8)
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where fr(z) = 1/(e*/T+1) is the Fermi distribution function for temperature 7. The statement
that Hy, describes infinite reservoirs implies that Eq. (8) holds at all times.

The model has three important energy scales: €, which controls the steady state dot occupancy,
the interaction scale U, and the level broadening

rew)=my_ Vel (w—eg) 9)
p

associated with lead «. The total level broadening is
r=rt+rt (10)

and the dimensionless measure of interaction strength is U/I" Very roughly, strong coupling
physics appears for U 2 w[" while the opposite limit is reasonably well described by perturba-
tion theory in U.

3 Weak-coupling algorithm

3.1 Auxiliary-field formalism

In the weak coupling expansion we treat Hy = H}}m + Humix + Hpan exactly and Hyy as a
perturbation. H is a noninteracting problem for which the density matrix and all correlators
of the dot-lead system can be determined exactly. We take the initial density matrix to be the
steady-state density matrix corresponding to H,

eiﬁHO

" Tre-BHo’

Po (1)

and we turn on the interaction at time ¢ = 0. Here we assume that the temperatures of the two
leads are identical; the generalization to unequal temperatures is straightforward.

We formulate the perturbation theory in U as a real-time adaptation of the continuous-time
auxiliary field method of Ref. [26], but the real-time version of the weak-coupling approach by
Rubtsov ef al. [23] works analogously. Considering @ = 1, the starting point for the real-time
auxiliary field method is the following expression for the identity

1 _ Tr pO eit(H0+HU7K/t) efit(H0+HU7K/t)’ (12)

with K a constant which is in principle arbitrary and may be chosen to optimize the simulation.
Using an interaction representation in which the time evolution of the operators is given by
O(s) = esHo O e*Ho we can rewrite Eq. (12) as

1= Tr po (7161']5 ds(HU(s)—K/t)> pitHo ,—itHo (Te—ifot ds(HU(s)—K/t)>7 (13)
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with 7 the time ordering and 7 the anti-time ordering operator, and expand the time-ordered
exponentials into a power series. This leads to the expression

1="Tr pgz —iK/t) / dty- - dtme”IHO 1—tHy /K) - - e/t =tm-0Ho () g,/ [) it tm) H

tm 1

X Z ZK/t /dtl dt e—z(t tn)Ho 1 tHU/K) —z(t2 t1 HO(l tH /K) —ltlHo

tn—1

(14)

Using the explicit form for Hy (Eq. (6)) and the auxiliary field decomposition of Ref. [27] we
can rewrite the interaction term as

— (tU/K) (nagna,—(nar +nay)/2) = 1/2 ) et (15)
s=—1,1
cosh(y) =1+ (tU)/(2K). (16)

Note that the constant K has been introduced to enable this decomposition. The trace is now a
product of exponentials of one-body operators,

1= ZZ—zm"K/th”Z Z /dh /dt /dt1 /dt | G BHOUTre PHoe x
tm—1 >

tn—1

—i(ta—t1)Ho,o

..........

eltlHO,ae'Ysla'nd,a' ..e (tm_tmfl)HO,ae'Ysmo'nd,ae_ (tm—tn)Ho,ae’YSnond,a, ..e V510N d,0 o —it1Ho,o

and can be expressed [26] in terms of determinants of two (n+m)x (n-+m) matrices

N;' =€ —iGo, (e 1) (17)
as
1—22 mnK/%ﬂ”ﬂZ Z /dt1 /dt /dt1 dt [ det N,

""""" " - (18)

Here, e = diag(e?%17,..., €77 e¥*n? .. €7*19) and Gy, is given by

"

it ={ G S g
In the above expression, G§ (t,t') = i(d'(t')d(t))o, Gy (t,t') = —i{d(t)d"(t'))o, tx is the

“Keldysh time” coordinate along the unfolded Keldysh contour (Fig. 1) and ¢ the physical time
corresponding to k. In quantum dot systems, these Green functions can usually be calculated
analytically [28], while in nonequilibrium DMFT simulations, they are the output of the self-
consistency procedure [4]. In our quantum dot applications, we will use the infinite bandwidth
limit in which the level broadening is independent of w, so that

dw 1 1 :F tanh ( 'ua)
G</> t t” -+ I / X pmiw(t'=t") 7 20
DY @y — U224 I 20)

a=L,R

with the upper sign pertaining to G5 and the lower sign to G5 .
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3.2 Detailed balance and fast updates

The algorithm samples auxiliary Ising spin configurations {(tx 1, 1), (tk.2,52), ... (tins Sn)}
time ordered along the Keldysh contour 0 — ¢ — 0 (see Fig. 1) by random insertions and
removals of spins. The complex “weight” of a spin configuration is given by

w({(t;ﬂ, 81), (tK,27 82), R (th, Sn)}) = (—an)(ln+)(Kdt/2t)n7+n+ H det Ng_l, (21)

where n, denotes the number of spins on the forward contour and n_ the number of spins on
the backward contour (n = n+n_).
The detailed balance condition for insertion/removal of a spin is similar to the imaginary time
formulation of Ref. [26]. Assuming that we pick a random time on the unfolded contour of
length 2¢ and a random direction for this new spin, pP(n—1 — n) = (1/2)(dt/(2t)), and
propose to remove this spin with probability pPP(n — n—1) = 1/n we get
p(n—1 —n) _ ii% det(NEl) | 22)
p(n — n—1) n LLdet(N, ),
with the factor +i corresponding to a spin which is inserted on the forward contour and —: to a
spin which is inserted on the backward contour.
For the fast updates, let us consider the most complicated case, which is the insertion of a spin.
This update adds one row and one column to the (n—1)x (n—1) matrix N, resulting in the nxn
matrix NV’ (we assume here that this new row/column is the last one, n, and drop the spin index).
The determinant ratio is

det(N'~1)

-1
:m:(e —iGo(e5—1) Z —zGoe—))m, (23)

with R; = Z;:ll (€% —iGo(e—1 ))n’jNN. The calculation of this quantity requires O(n?)
operations. The new matrix elements are given by

1
1
N, =—-L;, (25)
’ r
1
N, = —=F; (26)
1
N, . ==, (27)
’ r

withi=1,...,n—land L; = > 7~ LN, i(e” —iGo(eS—I))jn.
From Eq. (27) it follows that computing the determinant ratio for removing a spin is O(1). The
elements of the reduced matrix are obtained as

j= Ny N 28)
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3.3 Measurement of the Green function, density and double occupancy

To measure the Green function G, (t, ) we have to insert an operator d,, at time % and
an operator d! at time t7. The weights of these configurations w({(tx.1, 1), - (tk.n, Sn)};
d, (th)dl (t%.)) are related to those defined in Eq. (21) by

w({(tr1,81)s - (i, sn) F; d(E)dT (")) _
w({(tK,l, Sl), ce (th, Sn)})

N-L(i 4 ; Lot
dot [ —2e 0] sl th) )
—iGoo(tes tic ) (€7 — 1) | iGlo(tic, 1)

det N1

Hence, the Green function can be obtained as the Monte Carlo average of the quantity [26]

Golth th) = Gool(thc. th) +1 Y Goolth, tr) ((e*=1)N,), Gooltr,iti),  (30)

,j=1

which yields the measurement formulas

ot the) = < tK,tK ), (31)
nﬂu tK < 1 - ZGT tK,tK))( —Z'éi(tK,tK>>>. (33)

3.4 Current measurement

The current from the dot to the left lead is

IL:ZILU:—HmZZ {aktd,) (34)

o peL

Thus, in terms of the composite lead operator a, , = > per Viant, we find

I1,(t) =—2Tm Tr py (7-€i I ds(HI(s)fK/t)> itHo ~ aLJ d, e~itHo (Te ds(Ho(s)— K/t))

:—2[11122 m"K/zt"””Z Z/dtl /dt /dt1 dtx

.......... tm—1 tn—1
det N5 —BHg it1Ho,o ,v81014,5
W Tr |e (& e e
re— o
e'ysmo'nd ael(t tm)HO o a’L " d i(t— tn)HO 66'70'5n0'nd oo, e'Yslo'nd,oefitlHO,a] , (35)

with & the spin which is opposite to o (this spin component has no operator a and thus simply
gives the usual factor det N;!). The measurement of the current is thus very similar to the
measurement of the Green functions, but one factor in the Wick decomposition is now

(36)
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In the infinite bandwidth limit we have [18]

A< (tv t,) Y d_wefiw(tft’) FLFR (f<w_:uL) - f(w_NR>)
) } -

At 27 (w—ea=U/2)* + I
d_w —iw(t—t') (w—eq—U/2) flw—pr)
A e e {(fu—uL) R

The trace factor in Eq. (35) for an n-th order diagram corresponding to the nxn matrix N, ! is
the determinant of the (n+1) x (n+1) matrix

— N_l(iaj) ‘ A(that)
1 _ o 5
M= ( SiGoolt trg) (@ — 1) | ALY ) G

The current can thus be expressed as follows:

we] (w!e /|w.|) i !

with ¢. the phase of the weight w,. (Eq. (21)) and

wle det Nzt det M1
w.  det N;'det N;1

A(tgm,t). (40)

n,m

= A(t,t) + > iGo(t,trcn) (€ —1)N,)

Combining Egs. (39) and (40), the current measurement formula becomes

]L:—QImZ<A(t, t) + <ZiG07g(t,tK7n)((eSff—1) Na)n7mA(tK7m,t)¢c>lwc|W>. (41)

n,m

The first term in this expression is the steady-state current for the non-interacting system

dw TpTa(f(w=p) = flw—pn))
o (w—eqU/2)% + I '

Ip = —2Im (2A(t,t)) = 8 (42)

3.5 Improved sampling and estimators

In the particle-hole symmetric case, the parameters K of the algorithm can be chosen such that
only even perturbation orders appear in the expansion. In fact, for

tU
K=—— 43
1 (43)
the spin degree of freedom effectively disappears (¢7* = —1) and the algorithm becomes

the real-time version of Rubtsov’s weak-coupling method [23] for the particle-hole symmetric
interaction term Hy — K/t = U(ngt1—3)(na,—3) [29]. The odd perturbation orders are con-
tinuously suppressed as K approaches —tU /4. In order to sample only even order diagrams, it
is however necessary to implement modified updates, which insert or remove two spins at the
same time.
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We next discuss some tricks to improve the efficiency of the current measurement [19]. First,
we rewrite the expectation value of Eq. (40) as

A(t, t) +/d81/d82 GO,U (t, 81> <l Z 5@(81, tK,n) ((650 —I)Ng)n’m(sc(SQ, tK7m>>A<82, t), (44)

where the variables s; and s, run over the entire contour and the contour delta function is
defined by [dsdc(tx,s)f(s) = f(tx). Itis therefore sufficient to accumulate the quantity

Xo(51,82) = <Z Z de(s1, TfK,n)((€S°—1)Na)n7m5c(82, th)> (45)

Furthermore, it follows from Eq. (21) that the weight of a Monte Carlo configuration changes
sign if the last spin (corresponding to the largest time argument) is shifted from the forward
contour to the backward contour or vice versa. Since the absolute value of the weight does
not change, these two configurations will be generated with equal probability. As a result, all
the terms in Eq. (44) which do not involve the last operator on the contour will cancel. It is
therefore more efficient and accurate to accumulate

X, (81,82) = <z Z (x(sl,last; S, 1) + x(s1, ; SQ,laSt))>, (46)
I not last
with z(s1,n; 52, m) = dc(s1,txn) (€77 —1)Ng)n Oe(s2,tkm)-
Also, by comparing the contributions to the current of the original configuration and the one
with the last operator shifted from the upper to the lower contour (or vice versa), one finds that
they almost (but not completely) cancel. The error bars on the current can thus be substantially
reduced by appropriate symmetrizations of X (s, $2).

4 Hybridization expansion algorithm

4.1 Formalism

A complementary diagrammatic Monte Carlo algorithm to the one described in Sec. 3 can be
obtained by performing an expansion in powers of the dot-lead hybridizations V. This sim-
ulation approach has been introduced for equilibrium systems (imaginary-time formalism) in
Refs. [24,25] and was discussed for a nonequilibrium quantum dot with phonons (but with-
out electron-electron interactions) in Refs. [20,22]. It has been applied to interacting dots in
Refs. [18,21]. We will present here the derivation for the impurity model defined in Egs. (3)-(6),
but the method can easily be extended to general classes of impurity models by using the matrix
formulation of Ref. [25].
In the hybridization expansion approach one adopts an interaction representation with respect
to the dot-lead mixing, so the time evolution of the operators is given by the local part of the
Hamiltonian, H,c = Hgo + Hpam- Considering O =1, the starting point of the derivation is the
identity

1= Tr po (7—€i Je dsHmix(s)) oitHioe ,—itHioe <7—6—z’ I dsHmix(s)). (47)
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The initial state of the system is specified by the density matrix pg = pgot ® Poath, With pPpam a
function of inverse temperature 5 and the chemical potentials 1¢;, r. In the calculations presented
here we assume that the dot is initially empty, pimp = |0)(0].

Expanding the time-ordered exponentials into a power series yields

t t t t
1=Trpg» i" / diy- - - / b Hyix (£1) -+ - Hinix(Em) Y ()" / dty- - - / dty, Hix () - - - Hyix (1).
m 0 Emfl n 0 tn—1
(43)
Because Hmix = Z (Hrcxllclfx + Hrilnx) with Hrcril(lfx = Za:L,R Zp ‘/pa Z]:Tdo’ Hrcrlux - (Hggx) and

the time evolution conserves the spin, we need for each o separately an equal number of creation
and annihilation operators on the Keldysh contour 0 — ¢ — 0:

t t t
1= ) Hz‘mo+mé(—¢)%+n’a/ dig- - - / die, / i - / / dtg- - / dte / e . /
/ ’ 0 tfng_l 0 t'o te t’e,

Mo+Neg=my+ng O

le mix mix mix mix mix mix mix

TrpoTTHHd ta ]_‘]dlr (t/a)Hd (ta)Hd (t/a> ZHlobte_’lHlogt Hd (ta)Hd (tIQU)Hd (ta)Hd (t/10)7
(49)

where 7 is the anti-time ordering operator for the s and 7 the time ordering operator for the
ts. At this stage we can separate the bath operators a;; , from the dot operators d,, and write

Tr="Trg {pdof’f L1 do ()b (7)o (1) dL (E7) - - - e Mhontem Mot ., (15) ] (té")da(t‘f)dl(t’f)}

X Trpan {pbath'fTH Z Z Z Z %O?Vﬁ?,l*' N Vp(flvzll*

Lo T S oap L ox A .o N ) /
0 P1&1;---iPmg Omg P15 5P X p1&15--Png Ang D1O55P 0 Xy
(o8 (o8 (o8 o

% al (1) aq (I7)al (t5)ag (157) - - - !t = ot . al(tg)%(té")al(t‘f)%(ﬂf)} )
(50

with a; € {L, R}. Since the leads are non-interacting we can evaluate the factor Try,m[- - - |
exactly. Due to Wick’s theorem one obtains a product of two determinants []_ det M, with
the size of M ! given by the number of operators d, on the Keldysh contour (m,+n,). The
matrix elements are given by [20,25]

M, (i, j) = iA(t5 i, 1% ), (51)

where 1% ; denotes the position of the ith annihilation operator and ¢7 ; the position of the jth
creation operator for spin ¢ on the unfolded Keldysh contour. The hybridization function A is
given by

A<(t'—t)

A(tK,t,K) = { A>(t/—t) A

A

(t'—t) + Aj(t'—t) tx > th,

52
(t'—t) + Ap(t'—t) tx <ty (>2)

<
L
>
L

~—
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€ 0 & 2e+U ¢

gﬁﬁ

Fig. 2: Left panel: Segment configuration corresponding to perturbation order 4 for spin up
(upper contour) and 2 for spin down (lower contour). Dot creation operators are shown as full
circles and annihilation operators as open circles. The segments represent the time intervals
in which an electron of the corresponding spin resides on the dot. Right panel: Segment con-
figuration corresponding to the expansion of the current (Eq. (61)) in powers of the dot-lead
hybridization. There is a fixed operator d, (red open circle) at time t and the hybridization
functions connecting to this operator have only a left (L) component. (From Ref. [18])

with
< . OO dw —iwt o
AS(t) = —2i o eI (w) flw—pa), (53)
s
> . dw 7zwt o
AZ(t) = 2 il (W) (1 = flw—pa)). (54)
If the bath density of states is flat and centered at zero with a Fermi-function like cutoff at
w = +w,,
F&
I = , 55
ﬂdt(w) (1 + eu(w—wc)) (1 + e—l/(w—l-wc)) (53)
one obtains in the limit 7" < w, the expression [18]
cos(¥t) eFiwet
ASIZ(t) ~ T 2 _ . 56
() 5sinh(%t) vsinh(Zt) (56)
To evaluate the trace over the impurity states in Eq. (50), Try]- - -], it is useful to employ the

segment representation introduced for impurity models with density-density interactions in
Ref. [24]. The sequence of dot creation and annihilation operators uniquely determines the
occupation of the dot at each time, and we can represent the time evolution using collections
of segments for spin up and down electrons as shown in Fig. 2. Each segment depicts a time
interval for which an electron with corresponding spin resides on the dot. The trace over the
impurity states can then simply be expressed as

Trd [ T } = pimp<c) exXp [_i‘gd Z (lg)rward - lgackward) - iU(l?:rif/Tr% - lgzslil\;ird)} : (57)

Here, pimp(c) is the element of the impurity density matrix which is compatible with the operator
sequence ¢ = {15 1, .- 1% vn iR 15 U i, } (assumed here to be 1 for configurations
which start and end with an empty dot and zero otherwise), (7 the length of the segments for
spin o and [°""% the length of the overlap between spin up and down segments.
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Hence, the Monte Carlo simulation samples collections ¢ of segments on the doubled Keldysh
contour (one for each spin) according to their weight

H M +m, na-‘rno detM dtm0+m ot Try [ } (58)

As in the equilibrium simulations [24], these segment configurations can be sampled using local
updates: 1) insertion/removal of a segment, ii) insertion/removal of an anti-segment (empty
space between segments) and iii) shifts of segment end-points. In order to use fast update
formulas similar to those discussed in Sec. 3 one should store and manipulate the matrices M,
that is, the inverse of the matrices defined in Eq. (51).

4.2 Measurement of the Green function, density and double occupancy

The Green functions can be obtained from the matrix M in a procedure analogous to the one
proposed for imaginary-time simulations in Ref. [24]. Particularly simple is the calculation of
the density and double occupancy. From the segment representation it immediately follows
that n,(t) is the probability to have a segment of spin ¢ present at time ¢, while nyn(t) is
the probability to find overlapping segments at time ¢ (taking into account the phases ¢, of the
Monte Carlo configurations):

(¢c 0(segment of type o at t))

|we|
no(t) = : (39)
<¢C> ‘wc‘
<¢C d(segments of type 1 and | at t)>|w |
nyny(t) = =. (60)
<¢C>\wc|

4.3 Current measurement

The current I, = —2Tm Y, _; V" (altd,) = —2Im <6L2’0d> can be measured as explained

in Ref. [20]. We expand the quantity
.[Lo—(t) — _9 Im Tl" 00 <7‘62 fg dSHmix(8)>€’LtHlog a’L " d e —itHioc <T6 Zfo dsHpix (s )) (61)

in powers of H i, which leads to the same collection of diagrams as discussed above, except
that there is now an operator d,, fixed at time ¢ and that the hybridization functions A connecting
to this operator have only an L-component

M7, §) = AL (5 4 17 ) +1AR( s 17 1) (1=01sg. ). (62)

Having identified the Monte Carlo configurations c (illustrated in the right panel of Fig. 2) and
their weights w, we can implement a random walk based on |w,| and measure the current as

ch = (de)jue| Z |wel. (63)

In contrast to the density measurement (which was based on an expansion of the identity so
that ) |w.| = 1/(¢¢)}w.|) We cannot directly measure the normalization factor ) |w.|. One
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Fig. 3: Distribution of perturbation orders and average sign obtained using the hybridization
expansion algorithm for a non-interacting dot with soft cutoff, T =0,V =0, ¢4/I" = —0.5 and
a single fermion species. Left panel: distribution of perturbation orders for different lengths of
the contour (tI" = 1.25,1.50,...,3 from left to right) and cutoff w./I" = 40. The average
perturbation order grows ~ t. Right panel: average sign as a function of time for the indicated
values of the cutoff. (From Ref. [18])

possibility to get rid of this unknown factor is to consider the ratio //I") between the current
and the lowest order contribution /(") which can be calculated analytically. Since

IS,) = (¢ d(c Lst 0rder)>|wc| Z |w,| (64)

we can measure the current as

. [(1) <¢c >|wc|

7 (@e6(c Lst order)) (65)

[Lo

|wel

S Perturbation order and average sign

If we switch on the interaction (weak-coupling approach) or hybridization (strong-coupling
approach) at time ¢ = 0, the average perturbation order increases approximately linearly with
the time interval to be simulated. This results in a dynamical sign problem: the factors of (4i)
associated with each order of the expansion and the complex determinants mean that the average
sign of the diagrams contributing to any quantity decays exponentially as the perturbation order
is increased. Figure 3 presents results obtained using the hybridization expansion algorithm on
a model of spinless fermions. The same qualitative behavior is found in interacting models and
in the weak coupling algorithm. The left panel shows the distribution of perturbation orders for
simulations over different time intervals. The mean perturbation order can be estimated from
the positions of the maxima in these curves. The right pannel shows the average sign, which
decays exponentially with perturbation order or length of the time interval to be simulated.

In practice, accurate measurements of physical quantities can be obtained for (sign) > 0.001,
and whether a steady state can be reached depends on the method, the parameters, and the
observable. Non-zero temperature and voltage bias tend to reduce the sign problem, but not
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Fig. 4: Distribution of perturbation orders for different values of the interaction U, for T = 0,
V =0, e4+U/2 = 0. The left panel shows the distribution of perturbation orders for the
weak-coupling algorithm (tI' = 1, infinite bandwidth), where the average perturbation order
grows ~ U. Right panel: distribution of perturbation orders for the hybridization expansion
algorithm (tI" = 1.5, w./I" = 10). Here there is almost no dependence on the interaction
strength. (From Ref. [18])

enough to enable simulations on significantly longer contours. The important effect of a non-
vanishing voltage bias is to accelerate the relaxation into the steady state, at least in the weak-
coupling approach.

The left panel of Fig. 4 shows that in the weak-coupling approach, the average perturbation
order (at fixed t) depends on the interaction strength. As in the imaginary-time version of this
algorithm [26], the perturbation order grows roughly linearly with increasing U.

In the hybridization expansion algorithm (right panel of Fig. 4), the average perturbation order
is essentially independent of interaction strength. This is in contrast to the imaginary-time ver-
sion of this algorithm [24], where the perturbation order decreases with increasing interaction
strength. From Eq. (58) it follows that the interaction term merely adds a phase to the Monte
Carlo weight and therefore does not affect |w(c)|. While the algorithm can treat strong inter-
actions, it is limited to finite bandwidth, since the average perturbation order diverges as the
bandwidth goes to infinity (see cutoff dependence in the right hand panel of Fig. 3).

6 Results: Interaction quench calculations

For practical real-time calculations, the weak-coupling QMC approach turned out to be more
useful than the hybridization-expansion QMC method. In particular, this method allowed to
obtain accurate current-voltage data for quantum dots (except in the low-voltage regime), and it
enabled pioneering nonequilibrium DMFT studies [30-33]. We will illustrate it in this section
with interaction quench data for quantum dots, taken from Ref. [19]. Since we consider non-
interacting initial states in these simulations, only the real-time branches of the contour need
to be considered, and we can use the formalism presented in Sec. 3. Temperature enters only
as a parameter in the lead correlators, so that arbitrary temperatures, including 7" = 0, can be
treated.
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Fig. 5: Left panel: Time evolution of the current for V/I" = 4 and different interaction strengths
(bath temperature T' = 0). In the initial state, the current is given by the steady state current
through the non-interacting dot. At time t = 0, the interaction is turned on. After a time of a
few inverse I, the current saturates at the value corresponding to the steady state current in the
interacting dot. Right panel: Analogous data for different voltage biases and fixed interaction
strength U/’ = 6. (From Ref. [19])

6.1 Convergence to the long-time limit: large bias voltage

Attime ¢ = 0, the system is noninteracting but subject to an applied voltage bias V, so a current
Iy (V') corresponding to the noninteracting model is flowing through the dot. At¢ = 0, the
interaction is turned on and the system relaxes into the steady-state configuration appropriate
to the interacting model. The left panel of Fig. 5 shows the time dependence of the current
calculated for the large bias voltage V/I" = 4 and several interaction strengths. The current
initially decreases sharply, overshoots and eventually relaxes back up to the new steady-state
value. The interaction-dependence of the steady-state current is a consequence of the Coulomb
blockade physics, apparent even at the large voltages studied here.

For intermediate and large voltage bias (V/I" 2 2) and not too large interaction (U/I" < 8)
the time required for convergence to the steady state is t/’ ~ 2, essentially independent of
interaction strength. Given the scaling of the perturbation order (and hence the sign problem)
with U and ¢, interactions up to U/I" < 10 are accessible with moderate computational effort.

In the right panel of Fig. 5 we plot the time evolution of the current for fixed U/I" = 6 and
several voltage biases. For voltages V//I" 2 2, even though the transient behavior is clearly
voltage-dependent, the current settles into the new steady state after a time ¢/’ ~ 2. However,
as the voltage is decreased below V//I" & 2 the transient time increases. At V' = I the long time
limit is attained only for £I" = 3 and as V is further decreased the approach to the asymptotic
behavior becomes even slower.
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Fig. 6: Interaction quench in the small-voltage regime (T' = 0): Ratio of interacting to non-
interacting current for U/I" = 4 and U/I" = 6 and indicated voltage biases. For V/I" < 0.5
the time needed to reach the steady state grows much beyond the largest time accessible in the
Monte Carlo simulation. (From Ref. [19])

6.2 Convergence to the long-time limit: small bias voltage

To better analyze the approach to the steady state at small voltages we present in Fig. 6 the
time dependence of the current for several smaller voltages and two interaction strengths. For
better comparison, we plot here the ratio I/, of the interacting current / to the noninteracting
current Iy. One sees that as V' is decreased or U is increased the evolution of the current
from the post-quench minimum to the long-time steady state value takes an increasingly long
time. Since the longest accessible time is tI" ~ 6 for U/I" = 4 and ¢tI" =~ 4 for U/I" = 6,
the accurate measurement of / becomes impossible in the small-voltage regime. However the
short-time transient behavior is accessible at all voltages. While the ratio (1/1j)(t) is clearly
voltage dependent at higher biases, the data seem to converge as V' is reduced to a non-trivial
curve with a pronounced minimum near an only weakly U-dependent time t/" ~ 1.

It is plausible that the increasingly slow convergence as V' — 0 is a signature of the Kondo
effect, which is characterized by an energy scale which becomes exponentially small as U in-
creases. After the interaction quench, the Kondo resonance has to be built up as time progresses,
and in the limit V' — 0, 7" — 0 this requires an increasingly large number of interaction vertices
and hence an increasingly long simulation time. One expects that the time needed to evolve into
the steady state is proportional to the inverse of the associated energy scale.

The slow relaxation becomes an issue in the linear response regime, where the noninteracting
and interacting currents are very similar. For V/I" > 0.5, where the interacting current is
substantially smaller than [, a useful estimate of [ seems possible, even though in the voltage
window up to V/I" ~ 2 a small drift in the current may remain up to the longest accessible
times. This drift makes it difficult to define reliable error bars on . For V/I" < 0.25, an
accurate estimate is not possible from the interaction quench procedure, but the current is very
close to the linear response value.
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Fig. 7: Temperature dependence of the ratio of the interacting current at temperature T’ to the
noninteracting current at T’ = 0 for the indicated values of the voltage bias. The interaction
strength is U/I" = 6. The symbols show Monte Carlo results, the black line the analytical curve
for V. — 0 extracted from Ref. [34] and plotted for Ty /I" = 0.24. (From Ref. [19])

6.3 Temperature dependence

It is also of interest to examine the temperature dependence of the current. The interplay be-
tween voltage and temperature as the Kondo regime is approached presents an interesting prob-
lem. One expects that as the temperature is increased, the Kondo effect gets washed out and the
simulations would therefore more readily converge even at small bias voltages. The tempera-
ture dependence of the current calculated from the interaction quench for U/I" = 6 and several
values of the voltage bias is plotted in Fig. 7. In the linear response regime (V/I" = 0.125,
0.25) the ratio of the interacting current /(7") to the noninteracting current /o(7'=0) exhibits a
strong temperature dependence, even at 7'/V < 1. The temperature dependence arises because
lowering the temperature strengthens the Kondo resonance and leads to an increase in the inter-
acting current. The temperature dependence for small voltage bias (V/I" = 0.125) approaches
the analytical result for the temperature dependent zero-bias conductance in Ref. [34] and thus
allows us to estimate (from the temperature at which (V' —0) = I,/2) the Kondo temperature
as T /I" =~ 0.24, in good agreement with the estimate from the formula [35]

I\ 1/2
Ty ~ U(ﬁ) ¢~ TU/ST T /2U (66)

which is valid in the strong correlation regime and for U/I" = 6 yields T /I’ = 0.21.

As V is increased the temperature dependence is weakened. At intermediate values of V, in
the Coulomb blockade regime (V/I" = 2), the current has little temperature dependence at low
T. At large voltage bias (V/I" = 4), correlation effects are significantly weakened due to the
voltage, as is evident from the increase in / /1. The current in this regime remains insensitive
to temperature at low 7.
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Fig. 8: Current-voltage characteristics of the single-orbital Anderson impurity model. The
symbols show Monte Carlo data for U/I'=4, 6, 8, 10, while the lines correspond to the fourth
order perturbation calculation of Ref. [36]. The Monte Carlo results have been obtained by
means of U-quenches at T'=0. Error bars are on the order of the symbol size. (From Ref. [19])

6.4 Current-voltage characteristics

We now apply the weak-coupling QMC approach to compute the current-voltage characteristics
of the Anderson impurity model at half-filling.

Figure 8 shows the 7' = 0 result obtained using interaction quenches (w./I" = vI" = 10, essen-
tially the wide-band limit). The black curve shows the monotonic increase of the non-interacting
current with increasing applied bias voltage. The red, blue and pink lines show the interacting
current for U/I" = 4, 6, and 8 predicted by fourth order perturbation theory [36]. Consistent
with analytical arguments [37, 38], the interacting current initially rises with the same slope
as the non-interacting current, and reaches the non-interacting value also in the large-voltage
limit. At intermediate values of V, interaction effects suppress the current (Coulomb block-
ade). In fourth order perturbation theory, a hump appears in the /-1 curve around V/I" = 2
for U/I" = 6 and 8. At even larger U (clearly outside the range of applicability) fourth order
perturbation theory will presumably lead to a negative differential conductance at intermedi-
ate V. The Monte Carlo data for U/I" = 4, 6, 8, and 10 are shown by the red stars, blue circles,
pink diamonds, and orange triangles, respectively. Since these are U-quench results for 7" = 0,
only V/I" 2 0.5 data are shown. In the large voltage regime (V/I" 2 4), the numerical results
agree with the prediction from fourth order perturbation theory. Apparently, the fast decay of
the Green functions for large voltage bias simplifies the diagram structure such that fourth order
in X is sufficient at V//I" 2 4. At intermediate voltages, 1 < V/I" < 3, differences between
the Monte Carlo data and fourth order perturbation theory appear. The essentially exact numer-
ical data show no prominent hump feature near V/I" = 2, and hence no negative differential
conductance in the intermediate to strong correlation regime. The data in Fig. 8 however indi-
cate that fourth order perturbation theory yields correct results over the entire voltage range for
U/I" < 4. For larger interactions, and in particular around V/I" =~ 2 more complicated self
energy diagrams become important.
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times uy and usy (impurity model with p;, = pr = 0, T' = 0 and t = 10). The four panels
correspond to the four possible values of the two Keldysh indices a, and as. Right panel:
Integrand after summation over the Keldysh indices. (From Ref. [39])

7 Sampling of connected diagrams

The Monte Carlo algorithms described in Sec. 3 and 4 sample both connected and disconnected
weak- or strong-coupling diagrams. This is the main reason why the perturbation order grows
approximately proportional to the maximum simulation time ¢ and the average sign drops expo-
nentially with ¢. Since the formulation of these algorithms, alternative QMC approaches have
been developed [39,40], which eliminate the disconnected diagrams. In this section, we briefly
discuss the main aspects of these algorithms.

7.1 Weak-coupling approach

Instead of sampling the “partition function” O=1 (Eq. (12)) and accumulating appropriate
estimators for different observables, one can directly implement a weak-coupling diagrammatic
expansion for some given observable () [39],

QW) =D QuU", Qu=> we(Cy). (67)
n=0 Cn

In this short-hand notation, C), denotes a configuration of order n and ch contains the in-
tegrations of the vertex positions over the Keldysh contour. The weight wq(C,,) includes the
=+ factors from the expansion and a determinant of a matrix whose elements are bath Green
functions, analogous to that discussed in Sec. 3.

Instead of parametrizing time on the Keldysh contour by the Keldysh time ¢ x, one can introduce
the pair (¢, a), where t is the physical time and the Keldysh index a=0, 1 determines the forward
or backward branch of the contour. The important observation in Ref. [39] was that the explicit
summation over Keldysh indices eliminates the contribution of the disconnected diagrams from
(@, and allows to absorb significant cancellations between individual diagrams. This leads to
a decay of the integrand away from the time ¢ for which the observable is computed, as is
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Fig. 10:  Panel (a): Example of a hybridization expansion diagram with a backbone formed
by atomic propagators (thin solid lines) and “self-energy” insertions with one, two and three
connected hybridization lines (directions left unspecified). Panel (b): NCA pseudo-particle
Green function (thick arrow) defined in terms of the atomic propagator (thin arrow) and the
NCA self-energy (circle) via the pseudo-particle Dyson equation.

illustrated in Fig. 9 for the n=2 contribution to the local charge of an impurity model at ¢ = 10.
The four panels on the left show the real parts of the integrands of (), as a function of the two
real-time variables u; and us for the indicated combinations of the Keldysh indices a; and as.
The right panel plots the integrand after summation over Keldysh indices. The result is now
real and the function is indeed peaked near the measurement time =10, which suggests that
with this approach, large ¢ become more easily accessible. (In quantum dot problems, where
the long-time limit is determined entirely by the bath, even t—o00 can be accessed.)
Implementing a Monte Carlo sampling similar to the one described in Sec. 3 one can measure
the ratios @),,/Qo and hence (using an exact evaluation of Q) the different terms in the expan-
sion (67). It should be noted though that the summation over the Keldysh indices requires the
evaluation of 2" determinants at order n, so as long as the required orders increase with the
measurement time ¢, the computational effort grows as in a simulation with an exponentially
scaling sign problem. At long times, the elimination of the disconnected diagrams should how-
ever lead to a slower increase in the relevant orders with ¢ and thus a computational advantage
over the method presented in Sec. 3. A downside of the approach is that each observable has to
be sampled separately, while the “partition function” sampling allows to measure any observ-
able in one go, including the two-time Green functions which are essential for nonequilibrium
DMFT.

7.2 Strong-coupling approach

In the strong-coupling formalism, diagrams with disconnected insertions of hybridization lines
(Fig. 10(a)) can be eliminated by defining pseudo-particle propagators for the different atomic
states, which resum certain subclasses of diagrams. For example, in the noncrossing approxima-
tion (NCA) [41], one sums up all hybridization-expansion diagrams with no crossing hybridiza-
tion lines by defining a pseudo-particle self-energy as the product of a single hybridization line
and a pseudo-particle Green function, and solving a pseudo-particle Dyson equation, in which
the bare pseudo-particle propagator is given by the atomic Green function (Fig. 10(b)). At
the second oder (one-crossing approximation) [42], one considers pseudo-particle self-energy
diagrams with two connected hybridization lines, at third order those with three connected hy-
bridization lines, etc.
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Fig. 11: Upper panel: Evolution of the local state population for the initial state |1) (U =
—2e = 81" and BI" = 50). Faint colors show the bare hybridization expansion result for times
I't < 1.5, while the solid lines plot the inchworm result. Lower panel: Error estimate for the
data in the upper panel. (From Ref. [40])

The implementation of this scheme on the Keldysh contour has been discussed in detail in
Ref. [14]. The computational effort for the evaluation of the pseudo-particle self-energy how-
ever grows rapidly with increasing order, since each additional hybridization line implies two
internal time integrals, each hybridization line has two possible directions (forward or back-
ward) and in a spinful model two spin flavors. Also the number of distinct diagram topologies
rapidly increases. Practical calculations have thus been mainly limited to NCA and OCA. A sig-
nificant step forward occurred with the development of the inchworm approach [40], which uses
a Monte Carlo sampling approach to evaluate the internal time integrals. With this method, self-
energy diagrams up to fourth or even higher orders can be evaluated.

Thanks to the elimination of disconnected diagrams, longer maximum times ¢ than in the stan-
dard hybridization expansion of Sec. 4 can be accessed. This is relevant for example in sit-
uations where a slow initial relaxation hampers the measurement of a steady state property.
Figure 11 shows the evolution of the probabilities for the four different impurity states after the
sudden switch-on of the coupling to the bath at time ¢ = 0, for a system which is initially in
the state |1). In contrast to the conventional bare hybridization expansion (faint colors), which
only allows to calculate the dynamics up to ¢/’ ~ 1, the inchworm simulation can track the
relaxation almost to the steady state, which has equal probabilities for the states |) and [|).
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8 Beyond Monte Carlo

8.1 Tensor cross interpolation

A recent innovation, which may eliminate the need for Monte Carlo sampling in situations
which can be handled with perturbation orders < 30, is the tensor cross interpolation (TCI)
of multivariable functions [43,44]. In our case, the multivariable functions of interest are the
diagram weights, which depend on a certain number of Keldysh time variables. On a discretized
time grid, an n-dimensional function f(tx1,tk2,...,tx,) becomes an n-way tensor, which
can be factorized by TCI into a tensor train (or matrix-product state),

fltrastra, - tin) R Ti(tkr) - To(tka) - oo - To(tin). (68)

where the 7T; are matrices whose dimension depends on the properties of the function f and
the desired accuracy of the interpolation. The important point is that this factorization reduces
an n-dimensional integral to products of one-dimensional integrals, which can be efficiently
computed if the matrix dimensions are sufficiently low [44].

Recent studies have applied the TCI approach to both the weak-coupling and strong-coupling
diagrammatic schemes discussed in Sec. 7 and obtained promising results.

8.2 Weak-coupling expansion with TCI

The general idea of evaluating Feynman diagrams with the help of TCI has been introduced
in Ref. [44], which also demonstrated some applications to real-time impurity problems within
the general framework described in Sec. 7.1. Highly accurate results with perturbation orders
up to ~ 25 have recently been published in Ref. [46]. As an illustration, Fig. 12 shows the
current-voltage characteristics of the Anderson impurity model, and demonstrates the approach
to the linear-response behavior in the numerically challenging low-1" regime, even for strong
interactions.
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8.3 Strong-coupling expansion with TCI

The evaluation of the self-consistently resummed hybridization expansion diagrams (Sec. 7.2)
with the help of TCI is a promising strategy, since this expansion converges rapidly with the
diagram order in the strongly-correlated regime [14]. Two related but at the technical level dis-
tinct implementations for nonequilibrium steady-state problems have recently been presented in
Refs. [47] and [48]. One of them uses a standard TCI decomposition of the hybridization part of
the pseudo-particle self-energy integrand [47], and the other a so-called quantics-TCI decom-
position [49] of the full pseudo-particle self-energy integrand. In the quantics approach [48],
the time variables are expressed in a binary representation, and separate tensors are associated
with each bit. Pushing these methods to sufficiently high orders and assessing their efficiency is
the subject of ongoing research, but the strong-coupling TCI approach is likely to replace QMC
approaches for strongly correlated nonequilibrium impurity problems.

9 Conclusions

The basic idea of the QMC approach for nonequilibrium systems is to evaluate a diagram-
matic expansion on the two-leg Keldysh or three-leg Kadanoff-Baym contour using Monte
Carlo sampling. We detailed the original weak-coupling and strong-coupling formulations of
this approach, which are direct generalizations of the widely used continuous-time QMC meth-
ods [17] from the Matsubara axis to two-leg or three-leg contours. We discussed these methods
for quantum dot problems, where the bath is given and the main goal is the calculation of some
steady-state property (typically the current through the dot). The same machinery can however
also be used within nonequilibrium DMFT, where the bath Green functions or hybridization
functions are self-consistently computed in the DMFT loop [4]. In this context, the main chal-
lenge becomes the calculation of the impurity Green function G(t,t').

Especially the weak-coupling approach has allowed to obtain useful results, both for the current-
voltage characteristics of quantum dots [19], and for quenched or electric field driven Hubbard
models [4]. In the DMFT context, this method has enabled pioneering studies on dynamical
phase transitions [30] and dynamical band flipping [31], which even after more than a decade
remain exceptional examples of numerically exact nonequilibrium DMFT results. However,
in contrast to equilibrium, where the continuous-time QMC approach is powerful enough for
a wide range of typical applications, the real-time incarnation of this method is limited by a
dynamical sign problem. Since the average perturbation order grows approximately linearly
with the maximum time ¢, the time evolution is complex, and each operator comes with a
prefactor £, the average sign in the Monte Carlo sampling drops exponentially with increasing
t. This limits the simulations to short times.

A promising strategy to tame the sign problem is to suppress disconnected diagrams, which
contribute significantly to the sign cancellations, but not to the measured observables. In the
weak-coupling approach, this can be achieved by summing all diagrams with the same real-time
positions of operators, but different Keldysh indices [39]. While this summation also comes at
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an exponential cost, the available results suggest that the suppression of phase cancellations
more than compensates this cost. In the strong-coupling approach, one can switch to a pseudo-
particle formalism, and work with propagators which resum all the disconnected hybridization-
expansion diagrams with self-energy insertions up to a given order. The inchworm algorithm
[40] stochastically evaluates the pseudo-particle self-energies within this formalism.

The most recent development is the explicit evaluation of the integrals over diagram weights
via TCI [44]. This approach avoids Monte Carlo sampling and looks promising in situations
where the required perturbation order is < 30. The basic idea is to factorize the diagram weights
into a tensor-train form. Since this factorization reduces the evaluation of a high-dimensional
integral to the numerically much more simple evaluation of products of one-dimensional inte-
grals, it allows to treat high-dimensional functions which would be too expensive to integrate
with standard quadrature rules. Different flavors of TCI based impurity solvers are currently
being developed and tested and they are likely to outperform the real-time QMC solvers in most
applications.
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