Literatur

- Harald Ibach und Hans Lüth: *Festkörperphysik* Springer, 1988
- John Ziman: Principles of the Theory of Solids Cambridge University Press, 1963
 Prinzipien der Festkörpertheorie Harri Deutsch
- Neil Ashcroft and David Mermin: Solid State Physics Holt, Rinehart and Winston, 1976 Festkörperphysik Oldenbourg
- Martin Dove: Structure and Dynamics Oxford University Press, 2003 John Singleton: Band Theory and Electronic Properties of Solids Oxford University Press, 2001
- 37. IFF Ferienschule 2006 Computational Condensed Matter Physics

Übungsaufgabe

gegeben N_e Elektronen, N_i Atomkerne der Masse M_α und Kernladungszahl Z_α , lösen Sie:

$$H = -\frac{\hbar^2}{2m} \sum_{j=1}^{N_e} \nabla_j^2 - \sum_{\alpha=1}^{N_i} \frac{\hbar^2}{2M_\alpha} \nabla_\alpha^2 - \frac{1}{4\pi\epsilon_0} \sum_{j=1}^{N_e} \sum_{\alpha=1}^{N_i} \frac{Z_\alpha e^2}{|r_j - R_\alpha|} + \frac{1}{4\pi\epsilon_0} \sum_{j$$

The underlying laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that exact applications of these laws lead to equations which are too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead to an explanation of the main features of complex atomic systems without too much computation.

P.M.A Dirac, Proceedings of the Royal Society A123, 714 (1929)

More is Different

... the reductionist hypothesis does not by any means imply a ``constructionist" one: The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe.

Sometimes, as in the case of superconductivity, the new symmetry — now called broken symmetry because the original symmetry is no longer evident — may be of an entirely unexpected kind and extremely difficult to visualize. In the case of superconductivity, 30 years elapsed between the time when physicists were in possession of every fundamental law necessary for explaining it and the time when it was actually done.

Thus with increasing complication at each stage, we go up the hierarchy of the sciences. We expect to encounter fascinating and, I believe, very fundamental questions at each stage in fitting together less complicated pieces into the more complicated system and understanding the the basically new types of behavior which can result.

P.W. Anderson: More is Different, Science 177, 393 (1972)

Periodensystem

Periodensystem

н																	Не
Li	Be											В	С	Ν	0	F	Ne
Na	Mg											AI	Si	Ρ	S	CI	Ar
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs	Ba	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Atomradien

E. Clementi, D.L.Raimondi, and W.P. Reinhardt J. Chem. Phys. 47, 1300 (1967)

dichteste Kugelpackung

Dreiecksgitter

dichteste Kugelpackung

d=3

dichteste Kugelpackung

Stapelfolge: ABCABC (fcc) oder ABABAB (hcp)

lonenkristalle

CsCl

NaCl

Atom- und Hybrid-Orbitale

kovalente Kristalle: sp²

Graphen

ΒN

kovalente Kristalle: sp³

kovalente Kristalle: sp³

Diamant

Zinkblende (ZnS)

Tetraeder-Stapelung: ABC (fcc)

http://cst-www.nrl.navy.mil/lattice/

Kristalldefekte

Quasi-Kristall

14 Bravais Gitter

7 Kristallsysteme → 32 Kristallklassen

Brillouin Zone

Bilbao Crystallographic server: http://www.cryst.ehu.es/

crystallographic information file: cif

loop_									
_citation_id									
_citation_journal_abbrev									
_citation_year									
_citation_journal_volume									
_citation_page_first									
_citation_page_last									
_citation_journal_id_ASTM	_citation_journal_id_ASTM								
primary 'Physikalische Zeitschrift	Veroffentlichung								
loop_									
_publ_author_name									
Debye, P.;Scherrer, P.									
_cell_length_a	3.70								
_cell_length_b	3.70								
_cell_length_c	3.70								
_cell_angle_alpha	39.75	Kristallachsen							
_cell_angle_beta									
_cell_angle_gamma	39.75								
_cell_volume	18.651								
_cell_formula_units_Z	2								
<pre>_symmetry_space_group_name_H-M</pre>	'R -3 m R'	Dunktarunna							
<pre>_symmetry_Int_Tables_number</pre>	166	Funkigiuppe							

crystallographic information file: cif

loop_

_symmetry_equiv_pos_site_id _symmetry_equiv_pos_as_xyz

loop_

_atom_site_label _atom_site_type_symbol _atom_site_symmetry_multiplicity _atom_site_Wyckoff_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_B_iso_or_equiv _atom_site_occupancy C1 C0+ 2 c 0.167 0.167 0.0 1.

Symmetrieoperationen in Kristallachsen

Atompositionen

Phononen Dispersion: Al (fcc)

spezifische Wärme: Diamant

Zustandsdichte: Debye Näherung

Austausch Loch

Austausch-Korrelations Loch (QMC)

unpolarisiertes, homogenes Elektronengas

 $g_{xc}^{\sigma\sigma'}(r/r_s)$

$$r_s = (3/4\pi n)^{1/3}$$

G. Ortiz, M. Harris, P. Ballone Phys. Rev. Lett. **82**, 5317 (1999) P. Gori-Giorgi, F. Sacchetti, G.B. Bachelet Phys. Rev. B **61**, 7353 (200)

Austausch-Korrelations Loch

Austausch Loch

λ-integriertes Korrelations Loch

R.Q. Hood, M.Y. Chou, A.J. Williamson, G. Rajagopal, R.J. Needs, W.M.C. Foulkes Phys. Rev. B **57**, 8972 (1998)

homogenes Elektronengas (QMC)

D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

Ladungsdichte in C₆₀

FIG. 12. Valence charge-density in the yz plane (see Fig. 2) for RbC₆₀ in the fcc unidirectional structure. The plane passes through the Rb octahedral sites and, for each of two neighboring molecules, it contains a top hexagon edge and passes between two contact atoms plus the midpoint of another top hexagon edge. The Rb 5s electron is seen to be transferred to the C₆₀ molecule.

Die Suche nach guten Dichtefunktionalen

SCIENCE'S COMPASS

PERSPECTIVES: DENSITY FUNCTIONAL THEORY

In Pursuit of the "Divine" Functional

Ann E. Mattsson

P aul Dirac reputedly said that the Schrödinger equation (SE) marked the end of chemistry: All answers could be calculated from the SE. The SE

lated exactly, just as the properties of small systems can be calculated from the SE.

The first step toward the divine functional was the local density approximation (LDA)

Science 298, 759 (2002)

• PERSPECTIVES

sively used in gas-phase catalysis, where the metallic character of the catalyst makes traditional SE methods inappropriate, and for determining phase diagrams (e.g., for steels).

In recognition of the importance of DFT, Walter Kohn was awarded half of the 1998 Nobel Prize in Chemistry (the other half was awarded to John Pople) (10). Today numerous approximate functionals are in use (11)—a sign of the method's utility but also an indication that none is suitable for all systems. As the complexity of systems investigated by DFT grows (see the figure), the task of choosing the right functional be-

Comparison shopping for a gradient-corrected density functional John P. Perdew and Kieron Burke *Int. J. Quant. Chem.* **57**, 309 (1996)

Parametrised local spin density exchange-correlation energies and potentials for electronic structure calculations *Computer Physics Communications* **66**, 383 (1991)

Lösen der Kohn-Sham Gleichungen

Bandstruktur von Kupfer

winkelaufgelöste Photoemission (ARPES) vs. DFT Rechnung

P. Thiry *et al.*, Phys. Rev. Lett. **43**, 82 (1979) G.A. Burdick, Phys. Rev. **129**, 138 (1963)