Übungsblatt 7

1. Baker-Hausdorff Formel

Zeigen Sie, dass $e^A e^B = e^{A+B} e^{[A,B]/2}$ falls A und B mit [A,B] vertauschen (d.h. insbesondere wenn [A,B] eine komplexe Zahl ist):

- i. Zeigen Sie zunächst, dass $[A, B] e^A = e^A [A, B]$.
- ii. Entwickeln Sie $f(\alpha) = e^{-\alpha A} B e^{\alpha A}$ um $\alpha = 0$ und zeigen Sie, dass

$$B e^{\alpha A} - e^{\alpha A} B = -\alpha [A, B] e^{\alpha A}$$
 (1)

iii. Betrachten Sie die Ableitung der Funktion $g(\alpha) = e^{-\alpha(A+B)} e^{\alpha A} e^{\alpha B}$ und zeigen Sie, dass $g(\alpha) = e^{\alpha^2[A,B]/2}$. Setzen sie $\alpha = 1$ um die Baker-Hausdorff Formel zu erhalten.

2. verschobener harmonischer Oszillator

Betrachten Sie den Hamilton Operator $H = \frac{1}{2}(p^2 + q^2 - 2\sqrt{2}\gamma q)$.

- i. Zeigen Sie, dass es sich dabei um einen harmonischen Oszillator mit Ruhelage $q_0 = \sqrt{2}\gamma$ handelt und bestimmen Sie die Eigenwerte und Eigenfunktionen aus denen des ursprünglichen harmonischen Oszillators ($\gamma = 0$).
- ii. Zeigen Sie, dass mit dem Operator $a=(q+ip)/\sqrt{2}$ (mit $[a,a^{\dagger}]=1$) gilt $H=a^{\dagger}a-\gamma(a^{\dagger}+a)+1/2$. Führen Sie jetzt den Operator $b=a-\gamma$ ein. Zeigen Sie, dass $[b,b^{\dagger}]=1$ und $H=b^{\dagger}b+1/2-\gamma^2$.
- iii. Sei $|0\rangle_b$ der Grundzustand des verschobenen und $|0\rangle_a$ der des ursprünglichen harmonischen Oszillators (d.h. $a|0\rangle_a=0$ und $b|0\rangle_b=0$). Betrachten Sie den Translationsoperator $T(\sqrt{2}\gamma)=e^{i\sqrt{2}\gamma p}$ und zeigen Sie mittels der Baker-Hausdorff Formel, dass

$$T(\sqrt{2}\gamma)|0\rangle_a = e^{-\gamma^2/2}e^{-\gamma a^{\dagger}}|0\rangle_a$$
.

Folgern Sie mittels (1), dass $T(\sqrt{2}\gamma)|0\rangle_a = |0\rangle_b$.

3. Bosonische kohärente Zustände

- i. Seien a^{\dagger} und a bosonische Erzeuger und Vernichter (d.h. $[a,a^{\dagger}]=1$). Zeigen Sie, dass der Operator $D(\gamma)=e^{\gamma a^{\dagger}-\bar{\gamma}a}$ für beliebige komplexe Werte von γ unitär ist.
- ii. Die Zustände $|\gamma\rangle:=D(\gamma)|0\rangle$ heissen kohärente Zustände. Zeigen Sie, dass $|\gamma\rangle$ Eigenzustand des Vernichters a ist.
- iii. Beweisen Sie die Relation

$$D(\alpha)D(\beta) = e^{i\Im(\bar{\alpha}\beta)} D(\alpha + \beta)$$

Interpretieren Sie das Resulat im Lichte von Aufgabe 2.

iv. Seien wie im harmonischen Oszillator $q=(a^\dagger+a)/\sqrt{2}$ und $p=i(a^\dagger-a)/\sqrt{2}$. Zeigen Sie dass

$$D(\gamma) = e^{i\Re(\gamma)\Im(\gamma)} e^{i\sqrt{2}\Im(\gamma)q} e^{-i\sqrt{2}\Re(\gamma)p}$$

sowie

$$q e^{-ixp} = e^{-ixp} (q + x)$$
 und $p e^{iyq} = e^{iyq} (p + y)$.