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The study of atomic orbitals plays an important role in understanding the intrinsic properties of
atoms. In this report, we first discuss how to compute atomic orbitals for a one-electron system
numerically. Then we generalize the problem to many-electron systems to obtain solutions in
the self-consistent field approximation. In the end, we implement Monte-Carlo sampling to
visualize the computed orbitals in three-dimensional space.



0.1 Introduction

Atoms, which are the fundamental building blocks in nature, directly govern all the physical and
chemical properties of matter. To understand materials, we must understand individual atoms.
One of the most important and interesting problem is to study how the electrons are distributed
around the nucleus, i.e. the structure of atomic orbitals.
To compute atomic orbitals, the problem is to solve the Schrödinger equation

Hψ= Eψ (0.1)

where H, the Hamiltonian of the system, is given by
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The term in the bracket represents the kinetic plus potential energy of the ith electron, expe-
riencing the attraction from the heavy nucleus of charge Ze. The last term, which complicates
the behavior of the system, describes the electron-electron repulsions among all N electrons.
Eqn. (0.1) is basically an eigenvalue problem. The resulting eigen-energies E, are the possible
total energies of the system. The corresponding eigen-functions ψ, are the many-electron wave
functions that describe the electron distributions in the space.

0.2 One-electron system

0.2.1 Radial equation and angular equation
To start with, we consider the simplest case: a one-electron or hydrogen-like system. For N = 1,
Eqn. (0.1) reads
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ψ= Eψ (0.3)

In spherical coordinates, by separation of variables ψ(r,θ ,φ) = R(r)Y (θ ,φ), Eqn. (0.3) splits
into two equations, namely,
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where l is the angular momentum quantum number (non-negative integer).
The angular equation is simple. Eqn. (0.5) does not depend on the potential and is the same for
all atoms. The exact solutions for Y (θ ,φ) are the well known spherical harmonics [1].
The more difficult task is to solve the radial equation. Eqn. (0.4) simplifies if we change variables
u(r)≡ rR(r). The radial equation becomes
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with boundary conditions: u(r)∝ r l+1 as r → 0 and u(r)∝ e−r as r →∞.
Eqn. (0.6) looks like a one-dimensional Schrödinger equation, where we have a “centrifugal”
term (~2/2me)[l(l+1)/r2] in addition to the potential from the nucleus attraction. The problem
is to solve this equation for u(r) and the corresponding E. For this simplest one-electron system,
the solution is known analytically [1]. Nevertheless, we will solve this equation numerically so
that we can further deal with the more general case, the many-electron system.

0.2.2 Choice of units
Before we start to solve Eqn. (0.6), it is useful to pay attention to the choice of units. Obviously,
we can use the SI units, but the scale would be a problem. For example, in SI units, the reduced
Planck constant reads ~= 1.054572×10−34J · s, which is a crazy number from a computational
point of view. Hence, we employ atomic units, namely,

Length: 1 a0 ≈ 5.2918× 10−11 m

Mass: 1 me ≈ 9.1095× 10−31 kg

Time: 1 t0 ≈ 2.4189× 10−17 s

Charge: 1 e≈ 1.6022× 10−19 C

which are deliberately chosen such that

~ = 1 a2
0met
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4πε0 = 1 a−3
0 met

2
0e2

By adopting atomic units, the radial equation in (0.6) simplifies to
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This is how we implement the equation in the program. Distances are given in units of the Bohr
radius (a0) and energies in Hartree (a2

0met
−2
0 ).

0.2.3 Numerical method
We are now in a position to solve the differential equation in (0.7) numerically. It is often
convenient to solve problems on uniform grids. However, the curvature of the wave function
(second derivative) u′′ = 2

�

− Z
r
+ 1

2
l(l+1)

r2 − E
�

u indicates that the function u(r) oscillates faster
if r goes smaller. This suggests us to take more points for small r but fewer for large r. For in-
stance, Fig. 0.1 depicts the exact solution u40(r) for a hydrogen atom (Z = 1) on three different
25-point grids. Comparing Fig. 0.1a and 0.1b, we observe that a higher resolution close to the
nucleus is desired.
Our choice is to use a logarithmic grid [2], 0< r0 < r1 < · · ·< rn−1 <∞, where

ri =
1

Z
ex i (0.8)
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(a) u40 on a uniform grid
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Figure 0.1: Exact solution u40 for a hydrogen atom on 25-point grids. (a) u40 on a uniform grid;
(b) u40 on a logarithmic grid; (c) ũ40 on a transformed gird.

and x is a uniformly distributed grid

x i = x0+ i∆x (0.9)

The problem on the logarithmic grid r (Fig. 0.1b) can be easily transformed to a problem on
the uniform grid x (Fig. 0.1c) by a change of variable u(r) = u(ex/Z). Introducing a rescaled
quantity ũ≡ u/

p
r, one can show that Eqn. (0.7) transforms to
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The second derivative in the equation above can be written in the finite-difference form
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From Eqn. (0.10) and (0.11), we obtain
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This is a simple recursion. We first initialize ũ0 and ũ1 according to their asymptote ũ∝ r l+1/
p

r
as r → 0. Then we obtain ũ2, ũ3, · · ·, ũn−1 from the recursion above. Note that the energy
E is an unknown. To determine the energy, we implement the shooting method [3] to find E
such that ũn−1→ 0. For instance, we compute the first few radial wave functions of a hydrogen
atom. In this problem we take r0 = 0.001, rn−1 = 150.0 and ∆x = 0.001. The numerical results
R(r) = u(r)/r = ũ(r)/

p
r are shown in Fig. 0.2.

0.3 Many-electron system

0.3.1 Self-consistent field approximation
In the previous section we successfully implemented a numerical method to solve the one-
electron system. A more general question is to solve the cases where multiple electrons orbit
around the nucleus, i.e. the many-electron system.
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(a) R10, R20 and R30
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(b) R21 and R31
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Figure 0.2: Numerical results of the first few radial wave functions of a hydrogen atom. (a)
first three radial wave functions with l = 0; (b) first two radial wave functions with
l = 1; (c) the first radial wave function with l = 2

Recall our many-electron Hamiltonian in Eqn. (0.2). The Schrödinger equation gives
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ψ= Eψ (0.13)

Unfortunately, this equation cannot be solved exactly. The electron-electron interactions make
the system extremely difficult to analyze. Actually, even if we can solve Eqn. (0.13), the result-
ing many-electron wave function ψ(~r1,~r2, . . . ,~rN) will be an extremely huge object that is not
possible to store on an ordinary hard disc. Consequently, the self-consistent field (SCF) method
was developed to treat this problem approximately.
The idea of the SCF method is to take a mean-field potential to approximate the electron-
electron repulsions. The exact Hamiltonian
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is approximated by
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where VH(r) is called the Hartree potential.
Under this approximation, the many-electron problemψ(~r1,~r2, . . . ,~rN) dramatically breaks down
to one-electron problemsψ1(~r),ψ2(~r), . . . ,ψN(~r)which we already know how to solve. Eqn. (0.13)
now becomes
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for which the radial equation we are going to solve is
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It is identical to Eqn. (0.6) except that we have an additional Hartree potential VH(r).
The Hartree potential is the mean-field Coulomb potential created by all electrons. Each electron
contributes a part of the Hartree potential

VH(r) =
N
∑

i=1

Vi(r) (0.18)

Assuming spherical symmetric distributions of electrons, the potential contribution from each
electron is simply given by

Vi(r) =
1

4πε0
e

∫ ∞

r

Q i(r ′)
r ′2

dr ′ (0.19)

where Q i(r) = e
∫ r

0
u2

i (r
′)dr ′ is the electron charge enclosed in the sphere of radius r.

Now we encounter a dilemma:

• To compute the {ui(r)}, we need VH(r)

• To compute VH(r), we need the {ui(r)}

This “chicken-or-egg” problem can be solved by an iterative scheme as illustrated in Fig. 0.3. We
start from an initial guess of the Hartree potential, say, V 0

H (r) = 0. From this initial guess, we
obtain a solution {u0

i (r)}. Next, we use this solution to update V 1
H (r) and obtain a new solution

{u1
i (r)}. This loop continues until the Hartree potential V k

H (r) and solution {uk
i (r)} converge.

That is why this scheme is called self-consistent field method: {ui(r)} produces VH(r) and VH(r)
results in {ui(r)}, which is self-consistent.

initial
potential

compute
{ui(r)}

compute
VH (r)

update
VH (r)

converged? stop

no

yes

Figure 0.3: Flow chart of self-consistent field iteration. The loop starts from an initial potential
and continues updating the Hartree potential until the solution converges.

0.3.2 Exchange-correlation correction
The mean-field approximation works well for most of the atoms. However, in some cases, the
solution may not converge. A more accurate (and robust) computation requires an exchange-
correlation term in addition to the Hartree term. The approximated Hamiltonian is given in the
form

H0 =
N
∑

i=1
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+ VH(r) + Vxc(r) (0.20)

Vxc(r) is a subtle correction. The idea behind is the density functional theory (DFT), which
exactly maps the many-electron problem onto equivalent one-electron problems. In practical
calculations, the local density approximation (LDA) is usually used to simplify the computation
for this exchange-correlation term. There are many different functional approximations to com-
pute Vxc(r), but we will not explicitly list them here. A detailed discussion can be found in the
reference [4].
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0.3.3 Self-consistent field computation results
As an example, we demonstrate the SCF computation results for a carbon atom. A carbon atom
has 6 electrons, with corresponding electronic configuration: 1s2 2s2 2p2. The computation
starts with zero electron-electron interaction. Fig. 0.4a shows the first iteration solution as-
suming non-interacting electrons. Fig. 0.4b plots the second iteration solution with updated
Hartree potential and exchange-correlation correction. We observe that the wave functions are
shifted away from the nucleus (mainly the “outer” electrons) as a result of the electron-electron
repulsion, and the corresponding eigen-energies increase. The iteration continues until we see
there is no observable difference between iteration 15 and 20. Then we conclude that the
self-consistency is achieved and we obtained the radial wave function for a carbon atom.
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(b) Iteration = 2
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(c) Iteration = 5
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(d) Iteration = 10

0 0.5 1 1.5 2 2.5

−1

0

1

2

3

4

5

6

r

R
(r
)

 

 

1s2 E = −9.941
2s2 E = −0.500
2p2 E = −0.199

(e) Iteration = 15
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(f) Iteration = 20

Figure 0.4: Self-consistent field computation results for a carbon atom. From (a) to (f) the
wave functions and eigen-energies approach the converged solution. The solution
converges after about 15 iterations.

0.4 Atomic orbital visualization

0.4.1 Monte-Carlo sampling
As promised in the beginning, we are now going to visualize the atomic orbitals from the pre-
vious computations. An atomic orbital ψ(r,θ ,φ) consists of two parts, R(r) and Y (θ ,φ). The
radial part R(r), which we have spent a lot of effort on, is obtained from the self-consistent
field approximation. The angular part Y (θ ,φ), which we don’t need to worry about, is well
known as the spherical harmonics and its computation routine can be easily found in the book
Numerical Recipes [5].
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It is not trivial to visualize a three-dimensional function ψ(r,θ ,φ) as it would require four
axes r, θ , φ and ψ to plot the object. Therefore, we perform Monte-Carlo sampling to visualize
ψ(r,θ ,φ) in a probabilistic approach. Taking the radial function R42(r) of a silver atom as an
example, the idea is the following:

1. Generate a random point under the sampling curve (Fig. 0.5);

2. If this point falls into the shaded region |R42(r)|, we accept the coordinate r of this point.
Otherwise, this point is rejected;

3. Repeat the sampling many times. The density of the points represents the value of the
function |R42(r)|.
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Figure 0.5: Monte-Carlo sampling for the radial part R42(r). If the point falls into the shaded
region, we accept the r of this point. (a) inefficient uniform sampling; (b) efficient
weighted sampling.

The choice of the sampling curve strongly affects the efficiency of the scheme [6]. The simplest
way is to perform a uniform sampling, in which only uniform random number generation is
required. However, as shown in Fig. 0.5a, this method results in a huge waste of rejected
points due to the exponential decay of the wave function. A more suitable sampling curve is an
exponential function Ae−β r , which properly envelopes the wave function (Fig. 0.5b).
To determine the parameters A and β for the sampling curve, we need the information from the
radial wave function. Say, a function Rnl(r) with eigen-energy E, we determine the decaying
factor as β =

p

−2meE/~, which is suggested from the analytical solution of the one-electron
system [1]. The amplitude A is determined such that the sampling curve can enclose the entire
wave function with minimum A.
A similar idea applies to the sampling for the angular part Y (θ ,φ), but with a much simpler
sampling curve (well, surface if you like), a uniform sphere. Fig. 0.6 illustrates the sampling for
a spherical harmonics Y20(θ ,φ) on the x-z cut plane. If the point falls into the shaded region,
we accept the θ and φ of this point.
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Figure 0.6: Monte-Carlo sampling for the angular part Y20(θ ,φ) (x-z cut plane). If the point
falls into the shaded region, we accept the θ and φ of this point.

0.5 Visualization results

The combination of radial and angular sampling gives us the density plot of the atomic orbital.

Radial part R(r)×Angular part Y (θ ,φ) = Atomic orbtial ψ(r,θ ,φ)

Fig. 0.7 demonstrates the visualization results for the 4s orbital of a potassium (K) atom, the
4pz orbital of a bromine (Br) atom, the 4d3z2−1 orbital of a silver (Ag) atom and the 5 f y(3x2−y2)
orbital of a uranium (U) atom. The orbitals are colored in red if the wave function is positive
and in blue if is negative. In the atomic orbital plots (right), higher density of points represents
a larger absolute value of the wave function ψ(r,θ ,φ), which implies there will be a higher
probability to find an electron in that region.

0.6 Conclusion

Starting from the simplest case, we solved the one-electron system numerically on a logarithmic
grid. Then we generalized the problem into many-electron systems to compute the solution
from the self-consistent field approximation. Finally, we successfully performed a weighted
Monte-Carlo sampling to visualize atomic orbitals in three-dimensional space.
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Figure 0.7: Orbital visualizations for a potassium atom (1st row), a bromine atom (2nd row),
a silver atom (3rd row) and a uranium atom (4th row). (left) radial part; (middle)
angular part; (right) atomic orbital. The orbitals are colored in red if the wave
function is positive and in blue if is negative.
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