Exercise Sheet 4 due 14 November

1. Airy functions

Let $w(z) = \alpha \operatorname{Ai}(z) + \beta \operatorname{Bi}(z)$ be a general solution of the Airy differential equation w''(z) = z w(z).

i. Show that

$$\varphi(x) = w \left(\sqrt[3]{\frac{2me\mathcal{E}}{\hbar^2}} \left(x - \frac{E}{e\mathcal{E}} \right) \right)$$

solves the time in-dependent Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\varphi}{dx^2} + e\mathcal{E}x\,\varphi(x) = E\varphi(x).$$

What happens when $\mathcal{E} < 0$. Sketch the solution.

ii. Express the normalization integral $\int_{x_1}^{x_2} |\varphi(x)|^2 dx$ in terms of the integral over the Airy function $\int_{z_1}^{z_2} |w(z)|^2 dz =: c$, where $z_i = \sqrt[3]{2me\mathcal{E}/\hbar^2}(x_i - E/e\mathcal{E})$.

2. infinite potential well in electric field

Consider an infinite potential well of width $L=8\,\text{Å}$ with potential $V(x)=e\mathcal{E}x$ for |x|< L/2. Find the lowest three eigenenergies

- i. for zero electric field, $\mathcal{E}=0$
- ii. for $\mathcal{E}=100\,V/\mu m$