Exercise Sheet 7 due 12 December

1. Uncertainty relation

Calculate the expectation value of the square of the position and the momentum operator (for $\langle n|p^2|n\rangle$ see last exercise) to verify the uncertainty relation for the eigenstates of a harmonic oscillator.

2. Jordan algebra

The product AB of two Hermitian operators A and B is Hermitian if and only if they commute, [A, B] = 0. To make the product of two observables again an observable (i.e. Hermitian), we can introduce the symmetrized product A*B := AB+BA, which is obviously Hermitian. Show that the symmetrized product is commutative, A*B = B*A, but not associative $A*(B*C) \neq (A*B)*C$.

3. Pauli matrices

The Pauli matrices are defined as

$$\hat{\sigma}_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\hat{\sigma}_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\hat{\sigma}_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$,

- i. Find the eigenvalues and (normalized) eigenvectors $|\chi_{z,n}\rangle$ of $\hat{\sigma}_z$.
- ii. Find the eigenvalues and (normalized) eigenvectors $|\chi_{x,n}\rangle$ of $\hat{\sigma}_x$.
- iii. Show by explicit calculation that $\sum_{n} |\chi_{x,n}\rangle \langle \chi_{x,n}|$ is the identity matrix.
- iv. Determine the commutators between each pair of the Pauli matrices by explicit matrix multiplication. Write the result in terms of unit matrix and the Pauli matrices.
- v. Calculate $\exp(\sigma_x)$ by transforming to the eigenbasis and, alternatively, by using the power series.