wave function (state vector): $|\psi\rangle$ "ket" adjoint (transpose & complex conjugate): $\langle \psi | = |\psi\rangle$ "bra"

inner product: $\langle \psi | \varphi \rangle = \langle \varphi | \psi \rangle^*$ norm: $|\psi|^2 = \langle \psi | \psi \rangle$ real (probability interpretation!)

Hilbert space: vector space with inner product

expansion in ortho-normal basis $|\psi_n\rangle$ state vector: $|f\rangle = \sum |\psi_n\rangle \langle \psi_n|f\rangle$ linear Operator: $A = \sum |\psi_n\rangle \langle \psi_n|A|\psi_m\rangle \langle \psi_m|$

identity operator: $I = \sum |\psi_n\rangle \langle \psi_n|$ Trace: Tr $A = \sum \langle \psi_n | A | \psi_n \rangle$ (independent of basis)

Hilbert space and Dirac notation

unitary operator: $U^{\dagger} = U^{-1}$ or $U^{\dagger} U = I$ (leaves inner products unchanged)

basis transformation: $|f_{new}\rangle = U | f_{old}\rangle$ and $A_{new} = U A_{old} U^{\dagger}$ (physics unchanged) changing both, state vectors and operators, leaves physics unchanged.

only changing state vector but not the operators changes the physical state example: time evolution this is called the **Schrödinger picture** alternatively we could only change the operators and keep the state vector fixed, this is called the **Heisenberg picture**

> Hermitian operator: $M^{\dagger} = M$ real eigenvalues (observable) eigenvectors with different eigenvalues are orthogonal