exactly solvable problems

It might be noted here, for the benefit of those interested in exact solutions, that there is an alternative formulation of the **many-body problem**, i.e., *how many bodies are required before we have a problem?*

G.E. Brown points out that this can be answered by a look at history.

- In eighteenth-century Newtonian mechanics, the three-body problem was insoluble.
- With the birth of general relativity around 1910 and quantum electrodynamics in 1930, the two- and one-body problems became insoluble.
- And within modern quantum field theory, the problem of zero bodies (vacuum) is insoluble.

So, if we are out after exact solutions, no bodies at all is already too many!

Rayleigh-Schrödinger perturbation theory

$$\hat{H} = \hat{H}_0 + \lambda \hat{H}_1$$

perturbation of non-degenerate eigenstate $\hat{H}_0 | n^{(0)} \rangle = E_n^{(0)} | n^{(0)} \rangle$ ansatz (not normalized!) $E_n = E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \lambda^3 E_n^{(3)} + \cdots$

$$|n\rangle = |n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \lambda^2 |n^{(2)}\rangle + \lambda^3 |n^{(3)}\rangle + \cdots$$

solve power-by-power

$$E_n^{(0)} = \langle n^{(0)} | \hat{H}_0 | n^{(0)} \rangle$$

$$E_n^{(1)} = \langle n^{(0)} | \hat{H}_1 | n^{(0)} \rangle \qquad | n^{(1)} \rangle = \sum_{m \neq n} | m^{(0)} \rangle \frac{\langle m^{(0)} | \hat{H}_1 | n^{(0)} \rangle}{E_n^{(0)} - E_m^{(0)}}$$
$$E_n^{(2)} = \langle n^{(0)} | \hat{H}_1 | n^{(1)} \rangle = \sum_{m \neq n} \frac{|\langle m^{(0)} | \hat{H}_1 | n^{(0)} \rangle|^2}{E_n^{(0)} - E_m^{(0)}}$$

Rayleigh-Schrödinger perturbation theory

perturbation of degenerate state $\hat{H}_0 | n_{\alpha}^{(0)} \rangle = E_n | n_{\alpha}^{(0)} \rangle$ $|\tilde{n}_{\alpha}^{(0)} \rangle = \sum_s c_{\alpha\beta} | n_{\beta}^{(0)} \rangle$ $\left(\hat{H}_0 - E_n^{(0)}\right) | \tilde{n}_{\beta}^{(1)} \rangle = \left(E_{n,\alpha}^{(1)} - \hat{H}_1\right) | \tilde{n}_{\alpha}^{(0)} \rangle$ eigenvalue problem for $E^{(1)}$

$$\begin{pmatrix} \langle n_{1}^{(0)} | \hat{H}_{1} | n_{1}^{(0)} \rangle & \langle n_{1}^{(0)} | \hat{H}_{1} | n_{2}^{(0)} \rangle & \cdots & \langle n_{1}^{(0)} | \hat{H}_{1} | n_{d}^{(0)} \rangle \\ \langle n_{2}^{(0)} | \hat{H}_{1} | n_{1}^{(0)} \rangle & \langle n_{2}^{(0)} | \hat{H}_{1} | n_{2}^{(0)} \rangle & \cdots & \langle n_{2}^{(0)} | \hat{H}_{1} | n_{d}^{(0)} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle n_{d}^{(0)} | \hat{H}_{1} | n_{1}^{(0)} \rangle & \langle n_{d}^{(0)} | \hat{H}_{1} | n_{2}^{(0)} \rangle & \cdots & \langle n_{d}^{(0)} | \hat{H}_{1} | n_{d}^{(0)} \rangle \end{pmatrix} \begin{pmatrix} \mathcal{C}_{\alpha,1} \\ \mathcal{C}_{\alpha,2} \\ \vdots \\ \mathcal{C}_{\alpha,s} \end{pmatrix} = \mathcal{E}_{n,\alpha}^{(1)} \begin{pmatrix} \mathcal{C}_{\alpha,1} \\ \mathcal{C}_{\alpha,2} \\ \vdots \\ \mathcal{C}_{\alpha,s} \end{pmatrix}$$