
variational principle and Schrödinger equation
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variational principle and finite basis set
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non-orthogonal basis set
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variation results in generalized eigenvalue problem
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tight-binding
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superposition of well separated potentials Vn
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use solutions of individual potentials

as basis set

tight-binding approximation for matrix elements:
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for n and m nearest neighbors



Hellmann-Feynman theorem & forces

for non-degenerate state ...

molecular dynamics:
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Hellmann-Feynman theorem

Hellmann-Feynman theorem at degeneracies

Ofir E. Alon and L. S. Cederbaum
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The Hellmann-Feynman theorem is extended to account for degenerate states. Given a point #!#0 in
parameter space where the energy E(#0) is n-fold degenerate, it is shown that the corresponding n forces
!slopes" are obtained by diagonalizing the derivative of the Hamiltonian, "$H(#)/$#!#!#0

, in the subspace of
degenerate eigenstates. Such a rotation within the subspace of degenerate eigenfunctions is easy and simple to
apply in practical calculations and should be performed separately for each independent direction in parameter
space for which the forces are to be calculated.

DOI: 10.1103/PhysRevB.68.033105 PACS number!s": 31.15.Md, 03.65."w, 71.15."m

Hellmann-Feynman theorem !HFT"1,2 is widely used in
practice to calculate forces !slopes" in atoms, molecules and
crystals, but the way it appears in Refs. 1 and 2 and in quan-
tum mechanics textbooks !see, e.g., Ref. 3" is only correct
for nondegenerate states !see below". It should be mentioned
that there exists a more general form of HFT, which is de-
fined also for off-diagonal matrix elements !see, e.g., Refs.
4–9". However, the prescribed expressions do not provide an
explicit and general scheme to calculate forces at degen-
eracy. Although the matter is simple, we would like in this
paper to explicitly put forward the form that applies also to
degenerate states, because we have noticed that this form is
not known to scientists who apply the HFT to degenerate
states !see Ref. 10".
HFT !Ref. 1–3" proves that

f % j
!#"!"

$E j!#"

$#
!" " % j!#"# $H!#"

$# #% j!#"$ , !1"

where H(#)% j(#)!E j(#)% j(#), &% j(#)!% j(#)'!1 and #
is a parameter. An inseparable step in the proof of HFT is the
utilization of $% j(#)/$# , i.e., the assumption that this de-
rivative is a continuous function of # .
Now, consider the point #!#0 in parameters space. As

stated above, if E j(#0) is not degenerate, and hence % j(#0)
is uniquely determined !up to a phase", this well-known pre-
scription is well defined. However, if E j(#0) is degenerate,
then the above prescription is not well defined and some
complications and problems arise, as Zhang and George no-
ticed recently on the basis of numerical calculations.10 For
that, let % j(#0), j!1,2, . . . ,n , be a set of n degenerate
eigenstates of H(#0), E1(#0)!E2(#0)! . . . !En(#0)
(E(#0). In this case, any !normalized" linear combination
of the % j(#0) is still an eigenfunction of H(#0) with the
eigenvalue E(#0). Could this ‘‘freedom’’ to chose any linear
combination affect the validity of HFT and its proof at de-
generacy? The answer is positive. The reason is that
$% j(#)/$# as a function of # possesses, in general, a !re-
movable" discontinuity at #!#0. In this paper we show that
only for specific linear combinations, $% j(#)/$# is a con-
tinuous function of # at degeneracy for which the original
proof and contents of HFT can be utilized. Moreover, it is
shown that, unlike the situation for the nondegenerate case,
the linear combinations associated with forces at degeneracy

depend also on the direction !in parameter space" for which
one calculates the forces. Practically, a set of degenerate
eigenfunctions obtained in a numerical calculation has to be
appropriately rotated to allow for the correct calculation of
forces as expectation values of "$H(#)/$# )see Eq. !1"* at
degeneracy. These detailed and relevant points, all related to
the ‘‘freedom’’ to chose the linear combinations of eigen-
states at degeneracy, have been overlooked previously.
We would like to stress that asking what are the forces,

i.e., slopes of the energy curves, at degeneracy is a well-
defined !mathematical" question; The n forces !slopes" at the
point #0, in any chosen direction of parameter space, are real
and well-defined quantities. Thus, it is both relevant and of
practical use to enquire how to calculate these forces, with-
out any ambiguity !it is not difficult to see that different
linear combinations would lead to different results if the
original HFT, Eq. !1", is to be mistakenly utilized at degen-
eracy". One possibility is to calculate lim#→#0

$E j(#)/$# ,
which is computationally more demanding. Here, instead, we
generalize HFT to the degenerate case and demonstrate
that this solution is easy and simple to apply in practical
calculations.
Let us look more closely at the point of degeneracy E(#0)

and at the direction #0"+#→#0→#0#+# for which we
would like to obtain the n forces. At sufficiently small values
of +# , we may use first-order perturbation theory for degen-
erate states to evaluate the energies at the points #0$+# .
Using the Taylor expansion we readily obtain

H!#0$+#"!H!#0"$+#
$H!#"

$# #
#!#0

#O!+#2". !2"

Thus, in the context of perturbation theory the effect of the
operator $H(#)/$#!#!#0

on the degenerate energy E(#0)
should be studied. As it is well known, the splittings of the
degenerate energy E(#0) and the zeroth-order eigenstates at
the points E(#0$+#) are simply obtained by diagonalizing
the matrix representation of the perturbation in the subspace
of degenerate eigenstates !degenerate perturbation theory,
see, e.g., Ref. 3":
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Hellmann-Feynman theorem II

Breakdown of the Hellmann-Feynman theorem: Degeneracy is the key

G. P. Zhang
Department of Physics, Indiana State University, Terre Haute, Indiana 47809

Thomas F. George
Office of the Chancellor/Departments of Chemistry and Physics & Astronomy, University of Wisconsin-Stevens Point, Stevens Point,
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The Hellmann-Feynman theorem is a powerful and popular method to efficiently calculate forces in a variety
of dynamical processes, but its validity has rarely been addressed. Here a surprising failure of this theorem is
reported. The forces calculated by the theorem can be more than fifty times smaller than the forces calculated
by the finite differential method. Numerical evidence shows that the energy-level degeneracy is the main
reason. An analytical proof reveals that although eigenvalues do not depend on a linear combination of
degenerate wave functions, forces do sensitively depend on it, which leads to ill-defined forces. A scheme is
proposed to overcome this difficulty.

DOI: 10.1103/PhysRevB.66.033110 PACS number!s": 71.15.!m

The Hellmann-Feynman theorem1 is powerful and has
been widely used in many fields such as dynamical
processes,2 molecular dynamics,3 chemical reactions, and
surface reconstructions.4–6 The beauty of this theorem is that
in the adiabatic limit, it requires the diagonalization of
Hamiltonian matrices only once and enables one to calculate
all forces without recalculating wave functions. This saves a
tremendous amount of computational power, in particular in
those heavy-duty calculations such as ab initio calculations.2
This appealing feature has motivated extensive investiga-
tions for a long time,5 but the validity of the Hellmann-
Feynman theorem has been rarely addressed in the literature.
In this paper, we report a surprising failure of the

Hellmann-Feynman theorem. Forces computed by the theo-
rem are inconsistent with those computed by the finite dif-
ferential method, and even the signs of forces are totally
different. We find that the energy-level degeneracy is the
main reason. In the presence of the degeneracy, the force
given by the Hellmann-Feynman theorem is incorrect. Nu-

merical examples for C60 explicitly show that forces calcu-
lated by the Hellmann-Feynman theorem can be fifty times
smaller than forces calculated by the finite differential
method, though the finite differential method itself also gives
inconsistent results. An analytical calculation shows that al-
though any combination of degenerate eigenstates are still
eigenstates of the system, forces become ill defined. There-
fore, it is dangerous to use those forces to do simulations. A
scheme is proposed to overcome this difficulty.
We consider a physical system which is described by the

Hamiltonian matrix H. Such a system can be a solid,2 liquid,3
or molecule system.1 Within the adiabatic approximation, the
electron follows the motion of atoms. By diagonalizing the
Hamiltonian matrix, we obtain both the eigenvectors #!$n%&
and eigenvalues #En&, where H!$n%"En!$n%, or En

"'$n!H!$n% and '$n!$m%"(nm . The force F! n ,) corre-
sponding to level n can be computed by taking the derivative
of the energy En with respect to the position #r!)& of the
atoms along the direction ) ,

F! n ,)"!
*En

*r!)

"!
*

*r!)
'$n!H!$n%"!" *

*r!)
'$n! #H!$n%!$ $n% *H

*r!)
%$n& !$ $n%H" *

*r!)
%$n& #

"!" *

*r!)
'$n! #En!$n%!$ $n% *H

*r!)
%$n& !$ $n%En" *

*r!)
%$n& # "!$ $n% *H

*r!)
%$n& !En

*

*r!)

!'$n!$n%". !1"

Using the normalization condition '$n!$n%"1, we can
simplify Eq. !1" as

F! n ,)"!$ $n% *H

*r!)
%$n& . !2"

This is the Hellmann-Feynman theorem. Throughout the
derivation, except for the adiabatic approximation, we have

not invoked any assumption, so that the scheme is fully ge-
neric. The important feature of this theorem is that we can
calculate forces for different directions after we diagonalize
the Hamiltonian matrix only once. In real calculations, this is
very attractive.
Here, we take C60 as an example.7–9 Note that our con-

clusion is independent of such a selection.10 C60 has the high-
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Hellmann-Feynman theorem III

an elegant method...

Extended Hellmann-Feynman theorem for degenerate eigenstates

G. P. Zhang
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In a previous paper, we reported a failure of the traditional Hellmann-Feynman theorem !HFT" for degen-
erate eigenstates. This has generated enormous interest among different groups. In four independent papers by
Fernandez, by Balawender, Hola, and March, by Vatsya, and by Alon and Cederbaum, an elegant method to
solve the problem was devised. The main idea is that one has to construct and diagonalize the force matrix for
the degenerate case, and only the eigenforces are well defined. We believe this is an important extension to
HFT. Using our previous example for an energy level of fivefold degeneracy, we find that those eigenforces
correctly reflect the symmetry of the molecule.

DOI: 10.1103/PhysRevB.69.167102 PACS number!s": 71.15.!m

The Hellmann-Feynman theorem !HFT" !Ref. 1" is an ef-
ficient method, but when eigenstates are degenerate, an ex-
tension is necessary. The reason is that any good linear com-
binations among degenerate eigenstates are still good
eigenstates for the Hamiltonian, but are not necessarily good
states for the force. A few textbooks have mentioned the
degeneracy problem in HFT, but they do not go into much
detail.2 In a previous paper,3 we reported if one directly uses
the HFT to compute forces, in the presence of degeneracy,
the results depend on a linear combination of those degener-
ate wave functions. Fernandez,4 Balawender, Holas and
March !BHM",5 Vatsya,6 and Alon and Cederbaum7 have ex-
tended the traditional HFT to a more general case. They
pointed out that for a degenerate state #!$ l

n%& with degen-
eracy l, the force matrix

Fi j ,'
n "!($ i

n!
)H
)r'

!$ j
n% !1"

has to be diagonalized, and only the eigenforces are well
defined. In Eq. !1", H is the Hamiltonian and r' is the posi-
tion along the ' direction. In the following, we use our pre-
vious problem3 to demonstrate the significance of this exten-
sion.
We use the fivefold degenerate levels in Table I of our

previous paper !see level index from 13 to 18".3 We note that
those energy levels in Table I of our previous paper are cal-

culated from two different configurations of C60 , the pristine
and excited C60 . The fivefold degenerate case is from the
pristine C60 . We present the force matrix elements in Table I.
One notices that normally for a degenerate state, the off-
diagonal elements of the force matrix are nonzero, and a
unitary transformation may change both the diagonal and
off-diagonal elements. If one uses those diagonal elements as
forces to simulate the dynamics, they may lead to an incor-
rect result.
After diagonalization of the force matrix, we find

the following eigenforces: !!0.502 889 4, 0.116 201 7,
0.116 201 7, 0.116 201 7, 1.024 973 7". These eigenforces are
invariant under the unitary transformation U. One can easily
check that the trace of the eigenforces is exactly the same as
the force matrix.
For further insight into this problem, we have computed

in total 50 eigenforces on five atoms in the pentagon of C60
along the x and y directions. We first construct the force
matrices along the x and y directions for all five atoms, and
then we diagonalize those matrices to find the eigenforces. In
Fig. 1, the eigenforces are represented by arrows, and the
magnitudes of those eigenforces are proportional to the
length of the arrows. Both the x and y axes are in units of
angstroms. Depending on the location of the atoms, their
eigenforces are very different. For atom 1, three eigenforces
with almost the same amplitudes are along the positive x

TABLE I. Force matrix elements for the fivefold degenerate state in Table I of our previous paper.3 At
degeneracy, these off-diagonal elements are not exactly zero. i and j denote the column and row of the matrix,
respectively.

F(i , j) 1 2 3 4 5

1 0.0513534 0.5000872 0.3911370 0.1651198 !0.0512709
2 0.5000872 0.3542612 0.2295953 !0.1613814 !0.1063639
3 0.3911370 0.2295953 0.3301816 !0.1144363 !0.0885094
4 0.1651198 !0.1613814 !0.1144363 !0.0022564 !0.0057117
5 !0.0512709 !0.1063639 !0.0885094 !0.0057117 0.1371496
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