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Magnetism is Quantum Mechanical

QUANTUM MECHANICS
THE KEY TO UNDERSTANDING MAGNETISM
Nobel Lecture, 8 December, 1977

J . H .  V A N  V L E C K
Harvard University, Cambridge, Massachusetts, USA

The existence of magnetic materials has been known almost since prehistoric
times, but only in the 20th century has it been understood how and why the
magnetic susceptibility is influenced by chemical composition or crystallo-
graphic structure. In the 19th century the pioneer work of Oersted, Ampere,
Faraday and Joseph Henry revealed the intimate connection between electric-
ity and magnetism. Maxwell’s classical field equations paved the way for the
wireless telegraph and the radio. At the turn of the present century Zeeman
and Lorentz received the second Nobel Prize in physics for respectively
observing and explaining in terms of classical theory the so-called normal
Zeeman effect. The other outstanding early attempt to understand magnetism
at the atomic level was provided by the semi-empirical theories of Langevin
and Weiss. To account for paramagnetism, Langevin (1) in 1905 assumed in
a purely ad hoc fashion that an atomic or molecular magnet carried a per-
manent moment  , whose spatial distribution was determined by the Boltz-
mann factor. It seems today almost incredible that this elegantly simple idea
had not occurred earlier to some other physicist inasmuch as Boltzmann had
developed his celebrated statistics over a quarter of a century earlier. With
the Langevin model, the average magnetization resulting from N elementary
magnetic dipoles of strength   in a field H is given by the expression

(1)

At ordinary temperatures and field strengths, the argument x of the Langevin

function can be treated as small compared with unity. Then L(x) = :x, and

Eq. (1) becomes

perature, a relation observed experimentally for oxygen ten years earlier by
Pierre Curie (2) and hence termed Curie’s law.

To explain diamagnetism, Langevin took into account the Larmor preces-
sion of the electrons about the magnetic field, and the resulting formula for
the diamagnetic susceptibility is

Bohr − van Leeuwen theorem
in a classical system in thermal equilibrium 

a magnetic field will not induce a magnetic moment

Lorentz force perpendicular to velocity ⇒ does not change kinetic energy
Boltzmann statistics occupies states according to energy
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magnetic moments

complex wave function: current density

�j(�r ) = −
e�
2ime

�
Ψ(�r )∇Ψ(�r )− Ψ(�r )∇Ψ(�r )

�

orbital magnetic moment

�µ =
1

2

�
�r ×�j d3 = −

e�
2me

��L � = −µB ��L �

electron spin

�µS = −geµB ��S � , ge ≈ 2.0023 . . .

atomic moments of the order of  µB
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magnetic interaction

dipole-dipole interaction

∆E =
�µ1 · �µ2 − 3(R̂ · �µ1)(R̂ · �µ2)

4πε0c2 R3

interaction energy of two dipoles µB two Bohr radii a0 apart:

∆E = −
2µ2B

4πε0c2(2a0)3
= −

1/2

1372 8
Hartree ≈ 0.09meV

expect magnetic ordering below temperatures of about 1 K

what about magnetite (Fe3O4)
with Tc ≈ 840 K ?

R
µ1

µ2
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exchange mechanisms

coupling of magnetic moments
results from the interplay of

the Pauli principle 
with Coulomb repulsion 
and electron hopping

not a fundamental but an effective interaction: model/mechanism
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Models and Mechanisms

The art of model-building is the exclusion of real but irrelevant parts 
of the problem, and entails hazards for the builder and the reader. 
The builder may leave out something genuinely relevant; the 
reader, armed with too sophisticated an experimental probe or too 
accurate a computation, may take literally a schematized model 
whose main aim is to be a demonstration of possibility.

P.W. Anderson
Local Moments and Localized States

Nobel Lecture 1977
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Coulomb Exchange

Coulomb repulsion between electrons

HU =
�

i<j

1

|�ri − �rj |

consider two electrons in orthogonal orbitals φa and φb

Slater determinant of spin-orbitals:

Ψa,σ; bσ�(�r1, s1; �r2, s2) =
1√
2

����
φa(�r1) σ(s1) φa(�r2) σ(s2)
φb(�r1)σ�(s1) φb(�r2)σ�(s2)

����

=
1√
2

�
φa(�r1)φa(�r2) σ(s1)σ

�(s2)− φb(�r1)φa(�r2) σ�(s1)σ(s2)
�
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Coulomb exchange: same spin

when electrons have same spin: σ = σ’

Ψa,σ; bσ =
1√
2

�
φa(�r1)φb(�r2)− φb(�r1)φa(�r2)

�
σ(s1)σ(s2)

Coulomb matrix-element
�
Ψa,σ; b,σ

����
1

|�r1 − �r2|

����Ψa,σ; b,σ
�
=
1

2
(Uab − Jab − Jba + Uba) = Uab − Jab

Coulomb integral

exchange integral Jab =

�
d3r1

�
d3r2

φa(�r1)φb(�r1) φb(�r2)φa(�r2)

|�r1 − �r2|

Uab =

�
d3r1

�
d3r2

|φa(�r1)|2 |φb(�r2)|2

|�r1 − �r2|
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Coulomb exchange: opposite spin

when electrons have opposite spin: σ = -σ’

diagonal matrix-elements

off-diagonal matrix-elements
�
Ψa↑; b↓

����
1

|�r1 − �r2|

����Ψa↓; b↑
�

= −Jab

�
Ψa,σ; b,−σ

����
1

|�r1 − �r2|

����Ψa,σ; b,−σ
�
= Uab

Coulomb matrix

Ψa,↑;b↓(�r1, s1;�r2, s2) =
1√
2

�
φa(�r1)φb(�r2) ↑(s1)↓(s2)−φb(�r1)φa(�r2) ↓(s1)↑(s2)

�

Ψa,↓;b↑(�r1, s1;�r2, s2) =
1√
2

�
φa(�r1)φb(�r2) ↓(s1)↑(s2)−φb(�r1)φa(�r2) ↑(s1)↓(s2)

�

�
Uab −Jab
−Jab Uab

�
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Coulomb exchange

HU =





Uab − Jab 0 0 0
0 Uab −Jab 0
0 −Jab Uab 0
0 0 0 Uab − Jab





↑↑
↑↓
↓↑
↓↓

eigenstates

singlet:   Δεsinglet = Uab + Jab

triplet:   Δεtriplet = Uab − Jab

Ψ↑↑ =
1√
2

�
φa(�r1)φb(�r2)− φb(�r1)φa(�r2)

�
|↑↑�

1√
2

�
Ψ↑↓ + Ψ↓↑

�
=
1√
2

�
φa(�r1)φb(�r2)− φb(�r1)φa(�r2)

� 1√
2

�
|↓↑�+ |↑↓�

�

Ψ↓↓ =
1√
2

�
φa(�r1)φb(�r2)− φb(�r1)φa(�r2)

�
|↓↓�

1√
2

�
Ψ↑↓ − Ψ↓↑

�
=
1√
2

�
φa(�r1)φb(�r2) + φb(�r1)φa(�r2)

� 1√
2

�
|↓↑� − |↑↓�

�
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Coulomb exchange

Jab > 0

singlet

triplet

2Jab

orthogonal orbitals φa and φb:

first of Hund’s rules: ground-state has maximum spin

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10
number of electrons

S
L
J

d-shell
more electrons
more complicated
Coulomb matrix

Robert Eder:
Multiplets in
Transition Metal Ions
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kinetic exchange

Coulomb exchange: Coulomb matrix for anti-symmetric wave functions

kinetic exchange: only diagonal U, interplay of Pauli principle and hopping

toy model — two sites with a single orbital
hopping between orbitals: t
two electrons in same orbital: U

one electron Hamiltonian (tight-binding)

H =

�
0 −t
−t 0

�
| ↑ , · �
| · , ↑ �

eigenstates

φ± =
1√
2

�
φ1 ± φ2

�
ε± = ∓t

φ1 φ2

-t
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direct exchange: same spin

two electrons of same spin: basis states |↑ , ↑ � , |↓ , ↓ �

Hamiltonian: no hopping, no Coulomb matrix element (Pauli principle)

H =

�
0 0
0 0

�
|↑ , ↑ �
|↓ , ↓ �

εtriplet = 0
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direct exchange: opposite spin

two electrons of opposite spin: basis states

|↑ , ↓ � , |↓ , ↑ � (covalent states) |↑↓ , · � , | · , ↑↓� (ionic states)

Hamiltonian

H =





0 0 −t −t
0 0 +t +t
−t +t U 0
−t +t 0 U





|↑ , ↓ �
|↓ , ↑ �
|↑↓ , · �
| · , ↑↓�

hopping -t: keep track of Fermi sign!

|↑ , ↓ � −t−→ |↑↓ , · � |↓ , ↑ � −(−t)−→ |↑↓ , · �
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direct exchange: opposite spin

ε± =
U

2
±
√
U2 + 16 t2

2
, Ψ± =

�
|↑ , ↓ � − |↓ , ↑ � − ε±2t

�
|↑↓ , · �+ | · , ↑↓�

��

�
2 + ε2±/(2t

2)

εcov = 0 , Ψcov =
1√
2

�
|↑ , ↓ �+ |↓ , ↑ �

�

εion = U , Ψion =
1√
2

�
|↑↓ , · � − | · , ↑↓�

�

eigenstates

-2

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8

! 
/ 
t

U / t

ionic

covalent

ε+

ε−

limit U→ ∞ (or t→0):

ε− → U + 4t2/U

ε+ → −4t2/U

(εtriplet)
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downfolding

H =

�
H00 T01

T10 H11

�

G(ε) = (ε−H)−1 =
�
ε−H00 −T01
−T10 ε−H11

�−1

G00(ε) =
�
ε−

�
H00 + T01(ε−H11)−1T10

��−1

Heff ≈ H00 + T01(ε0 −H11)−1T10

partition Hilbert space

inverse of 2×2 block-matrix

resolvent

downfolded Hamiltonian

good approximation: narrow energy range and/or small coupling
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inversion by partitioning

2×2 matrix

invert block-2×2 matrix

M =

�
a b
c d

�
M−1 =

1

ad − bc

�
d −b
−c a

�

solve

M =

�
A B
C D

�
M−1 =

�
Ã B̃
C̃ D̃

� �
A B
C D

� �
Ã B̃
C̃ D̃

�
=

�
1 0
0 1

�

AÃ+ BC̃ = 1 = (A− BD−1C)Ã

CÃ+DC̃ = 0 � C̃ = −D−1CÃ
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direct exchange: effective Hamiltonian

systematic treatment of limit U→ ∞ (or t→0): downfolding

H =





0 0 −t −t
0 0 +t +t
−t +t U 0
−t +t 0 U





Heff(ε) =

�
−t −t
+t +t

��
ε− U 0
0 ε− U

�−1�−t +t
−t +t

�
≈ −
2t2

U

�
1 −1
−1 1

�
downfolding eliminates ionic states (actually change of basis)

diagonalize Heff

εt = 0 Ψt =
1√
2

�
|↑ , ↓ �+ |↓ , ↑ �

�

εs = −
4t2

U
Ψs =

1√
2

�
|↑ , ↓ � − |↓ , ↑ �

�
triplet

singlet
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direct exchange: effective spin-coupling

singlet

triplet

|2Jdirect |

J > 0   AF coupling

effective spin-Hamiltonian

Heisenberg J

Jdirect = εtriplet − εsinglet = 4t2/U

Heff = −
2t2

U

�
1 −1
−1 1

�
|↑ , ↓ �
|↓ , ↑ �

= +
2t2

U

�
2Sz1S

z
2 −
1

2
+

�
S
+
1 S
−
2 + S

−
1 S
+
2

��
=
4t2

U

�
�S1 · �S2 −

1

4

�
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book-keeping: second quantization

introduce operators       that put electron of spin σ in orbital φi:c†iσ

electrons anti-commute:

anticommutator

no electron:

| · , · � = |0�

single electron:

|↑ , · � = c†1↑|0�

| · , ↑ � = c†2↑|0�

two electrons:

|↑ , ↓ � = c†2↓c
†
1↑|0�

|↓ , ↑ � = c†2↑c
†
1↓|0�

|↑↓ , · � = c†1↓c
†
1↑|0�

| · , ↑↓� = c†2↓c
†
2↑|0�

c†iσc
†
jσ� = −c

†
jσ�c

†
iσ

{c†iσ, c
†
jσ�} = c

†
iσc
†
jσ� + c

†
jσ�c

†
iσ = 0
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second quantization: operators

annihilation operator:
removes electron 

of spin σ from orbital φi

{ciσ, c
†
jσ�} = δi ,j δσ,σ�

{ciσ, cjσ�} = 0 = {c
†
iσ, c

†
jσ�}

ciσ|0� = 0

adjoin:
�
c†iσ|0�

�†
= �0|ciσ

in particular

ciσc
†
jσ� |0� = δi ,jδσ,σ� |0�

c†iσcjσ� |0� = 0

niσ = c
†
iσciσ

Tuesday, September 4, 2012



second quantization: examples

two-site model with one electron

H = −t
�
c
†
1↑c2↑ + c

†
2↑c1↑ + c

†
1↓c2↓ + c

†
2↓c1↓

�
= −t

�

i ,j,σ

c
†
jσciσ

two-site model with two electrons
H = −t

�
c
†
1↑c2↑ + c

†
2↑c1↑ + c

†
1↓c2↓ + c

†
2↓c1↓

�
+ U

�
n1↑n1↓ + n2↑n2↓

�

= −t
�

i ,j,σ

c
†
jσciσ + U

�

i

ni↑ni↓

also works for single electron

•easy to write down many-body Hamiltonian
•easy to handle Slater determinants
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Hartree-Fock

ansatz: Slater determinant

|Ψ(θ↑, θ↓)� =
�
sin(θ↓) c

†
1↓ + cos(θ↓) c

†
2↓

� �
sin(θ↑) c

†
1↑ + cos(θ↑) c

†
2↑

� ��� 0
�

energy expectation value

minimize wrt θ↑ and θ↓

HF orbitals respect symmetry of model: restricted Hartree-Fock (RHF)
here: θ↑ = θ↓ = π/4

HF allowed to break symmetry: unrestricted Hartree-Fock (UHF)
here: θ↓ = π/2 − θ↑

E(θ↑, θ↓) = −2t (sin θ↑ sin θ↓ + cos θ↑ cos θ↓) (cos θ↑ sin θ↓ + sin θ↑ cos θ↓)
+U

�
sin2 θ↑ sin

2 θ↓ + cos
2 θ↑ cos

2 θ↓
�
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Hartree-Fock

energy expectation value for θ↓ = π/2 − θ↑

-2

-1.5

-1

-0.5

 0

 0.5

 1

0 /4 /2

E H
F(

) /
 t

U=2t
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Hartree-Fock

-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6  7  8

E 
/ t

U / t

exact
RHF
UHF

ERHF = −2t + U/2

EUHF =

�
ERHF for U ≤ 2t
−2t2/U for U ≥ 2t

Eexact =
U

2
(1−

�
1 + 16t2/U2) ∼ −4t2/U
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direct kinetic exchange

direct exchange

singlet triplet

virtual hopping -t2/U × 2

-t

U
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superexchange

H =
�

σ

�
εd

�

i

niσ + εp npσ − tpd
�

i

�
c
†
iσcpσ + c

†
pσciσ

��
+ Ud

�

i

ni↑ni↓

εpεd

tpd
Ud

TMOs: negligible direct hopping
between d-orbitals

instead hopping via oxygen 

symmetry:
only one oxygen-p
involved in hopping
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H =
�

σ

�
εd

�

i

niσ + εp npσ − tpd
�

i

�
c
†
iσcpσ + c

†
pσciσ

��
+ Ud

�

i

ni↑ni↓

H =




0 tpd tpd

tpd Ud + ∆pd 0
tpd 0 Ud + ∆pd




c
†
2↑c
†
p↓c
†
p↑c
†
1↑|0�

c
†
2↑c
†
p↑c
†
1↓c
†
1↑|0�

c
†
2↓c
†
2↑c
†
p↑c
†
1↑|0�

oxygen-p full, two d-electrons of same spin

superexchange: same spin

Heff = (tpd , tpd)

�
ε− (Ud + ∆pd) 0

0 ε− (Ud + ∆pd)

��
tpd

tpd

�
≈ −

2t2pd
Ud + ∆pd

superexchange
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superexchange: opposite spin





0 0 +tpd +tpd 0 0 0 0 0
0 0 0 0 +tpd +tpd 0 0 0
+tpd 0 Ud + ∆pd 0 0 0 −tpd 0 −tpd
+tpd 0 0 Ud + ∆pd 0 0 0 −tpd −tpd
0 +tpd 0 0 Ud + ∆pd 0 +tpd 0 +tpd
0 +tpd 0 0 0 Ud + ∆pd 0 +tpd +tpd
0 0 −tpd 0 +tpd 0 Ud 0 0
0 0 0 −tpd 0 +tpd 0 Ud 0
0 0 −tpd −tpd +tpd +tpd 0 0 2(Ud + ∆pd)





c†2↓c
†
p↓c
†
p↑c
†
1↑|0�

c†2↑c
†
p↓c
†
p↑c
†
1↓|0�

c†2↓c
†
p↑c
†
1↓c
†
1↑|0�

c†2↓c
†
2↑c
†
p↓c
†
1↑|0�

c†2↑c
†
p↓c
†
1↓c
†
1↑|0�

c†2↓c
†
2↑c
†
p↑c
†
1↓|0�

c†p↓c
†
p↑c
†
1↓c
†
1↑|0�

c†2↓c
†
2↑c
†
p↓c
†
p↑|0�

c†2↓c
†
2↑c
†
1↓c
†
1↑|0�
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superexchange: opposite spin

singlet-triplet splitting: J =
4t4pd

(Ud + ∆pd)2

�
1

Ud
+

1

Ud + ∆pd

�

Heff = H00 + T01
�
ε−

�
H11 + T12 (ε−H22)−1 T21

��−1
T10

≈ H00 − T01H−111 T10 − T01H−111 T12H−122 T21H−111 T10

= −
2t2pd

Ud + ∆pd

�
1 0
0 1

�
−

2t4pd
(Ud + ∆pd)2

�
1

Ud
+

1

Ud + ∆pd

��
1 −1
−1 1

�

expand in 1/Ud
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ferromagnetic superexchange

εpεd

tpxd

tpyd

tpd

Ud

tpd
Jxy

py
px

180o superexchange 90o superexchange

hopping only via oxygen-p pointing 
in direction connecting d-orbitals

no hopping connecting d-orbitals
but Coulomb exchange on oxygen

double exchange
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ferro superexchange: same spin

εpεd

tpxd

tpyd

tpd

Ud

tpd
Jxy

py
px





0 tpd tpd 0
tpd Ud + ∆pd 0 tpd
tpd 0 Ud + ∆pd tpd
0 tpd tpd 2(Ud + ∆pd)− Jxy





c†1↑c
†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0�

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0�

c†1↑c
†
x↓c
†
x↑c
†
y↑c
†
2↓c
†
2↑|0�

c†1↓c
†
1↑c
†
x↑c
†
y↑c
†
2↓c
†
2↓|0�

Heff = −
2t2pd

Ud + ∆pd
−

4t4pd
(Ud + ∆pd)2

1

2(Ud + ∆pd)− Jxy
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ferro superexchange: opposite spin





0 0 tpd 0 tpd 0 0 0
0 0 0 tpd 0 tpd 0 0
tpd 0 Ud + ∆pd 0 0 0 tpd 0
0 tpd 0 Ud + ∆pd 0 0 0 tpd
tpd 0 0 0 Ud + ∆pd 0 tpd 0
0 tpd 0 0 0 Ud + ∆pd 0 tpd
0 0 tpd 0 tpd 0 2(Ud + ∆pd) −Jxy
0 0 0 tpd 0 tpd −Jxy 2(Ud + ∆pd)





c†1↑c
†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↓|0�

c†1↓c
†
x↓c
†
x↑c
†
y↓c
†
y↑c
†
2↑|0�

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
y↑c
†
2↓|0�

c†1↓c
†
1↑c
†
x↓c
†
y↓c
†
y↑c
†
2↑|0�

c†1↑c
†
x↓c
†
x↑c
†
y↓c
†
2↓c
†
2↑|0�

c†1↓c
†
x↓c
†
x↑c
†
y↑c
†
2↓c
†
2↑|0�

c†1↓c
†
1↑c
†
x↑c
†
y↓c
†
2↓c
†
2↑|0�

c†1↓c
†
1↑c
†
x↓c
†
y↑c
†
2↓c
†
2↑|0�

Heff = −
2t2pd

Ud + ∆pd

�
1 0
0 1

�
−

4t4pd
(Ud + ∆pd)2

1

4(Ud + ∆pd)2 − J2xy

�
2(Ud + ∆pd) +Jxy
+Jxy 2(Ud + ∆pd)

�

= −

�
2t2pd

Ud + ∆pd
+

4t4pd
(Ud + ∆pd)2

1

2(Ud + ∆pd)− Jxy

�

+++
4t4pd

(Ud + ∆pd)2
Jxy

4(Ud + ∆pd)2 − J2xy

�
1 −1
−1 1

�

singlet-triplet splitting J = −
4t4pd

(Ud + ∆pd)2
2Jxy

4(Ud + ∆pd)2 − J2xy

(as for same spin) 
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double exchange

double exchange involves both, full Coulomb matrix and hopping

mixed-valence compound: non-integer filling of d-orbital
d-electrons can hop even when U is large

simple model: two sites with two orbitals each

1b

1a

2b

2a

-tbb

-taa

Jab
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double exchange

tbb

Jab

Sz=3/2 H =

�
−Jab −tbb
−tbb −Jab

�

Ψ± =
1√
2

�
| ↑, ↑�1 | · , ↑�2 ± | · , ↑�1 | ↑, ↑�2

�
=
1√
2

�
| ↑, · �b ± | · , ↑�b

�
| ↑, ↑�a

ε± = −Jab ± tbb

b-electron hops against background of half-filled a-orbitals
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double exchange

tbb

Jab

Sz=1/2

H =





−Jab −tbb 0 0 0 0
−tbb 0 −Jab 0 0 0
0 −Jab 0 −tbb 0 0
0 0 −tbb 0 −Jab 0
0 0 0 −Jab 0 −tbb
0 0 0 0 −tbb −Jab





ground state ε0 = −Jab − tbb
1√
6

�
|↑, ↑�1|· , ↓�2+|· , ↑�1|↑, ↓�2+|· , ↑�1|↓, ↑�2+|↓, ↑�1|· , ↑�2+|↑, ↓�1|· , ↑�2+|· , ↓�1|↑, ↑�2

�

=
1√
2

�
|↑, · �b + |· , ↑�b

� 1√
2

�
|↑, ↓�a + |↓, ↑�a

�
+
1√
2

�
|↓, · �b + |· , ↓�b

�
|↑, ↑�a

hopping electron aligns a-electrons ferromagnetically
(teleports local triplet into triplet of a-electrons)
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double exchange

tbb

Jab

Sz=3/2 Sz=1/2 Sz=−1/2 Sz=−3/2
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double exchange

alternative model:
assume passive orbitals with many electrons (large Hund’s rule spin)

example: eg electrons hopping against t2g background
consider these spins fixed with quantization axis tilted by ϑ relative to each other

rotation of quantization axis

d2b↑ = cos(ϑ/2) c2b↑ − sin(ϑ/2) c2b↓
d2b↓ = sin(ϑ/2) c2b↑ + cos(ϑ/2) c2b↓

−tbb c†2b↑c1b↑ = −tbb
�
+cos(ϑ/2) d†2b↑ + sin(ϑ/2) d

†
2b↓

�
c1b↑

−tbb c†2b↓c1b↓ = −tbb
�
− sin(ϑ/2) d†2b↑ + cos(ϑ/2) d

†
2b↓

�
c1b↓

hopping mixes spins
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double exchange

assume a-spins cannot be flipped ⇒ no J terms
4 independent 2×2 Hamiltonians

for tbb << Jab tilt merely reduces width of b-band

ε± = −Jab ± tbb cos(ϑ/2)

again, hopping of b-electron prefers ferro aligned a-electrons
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orbital ordering

same model, but now one electron per orbital

H =





0 0 −tbb −taa
0 0 +taa +tbb
−tbb +taa Uab − Jab 0
−taa +tbb 0 Uab − Jab





effective interaction between orbitals: orbital singlet/triplet

Heff ≈ −
1

Uab − Jab

�
t
2
aa + t

2
bb −2taatbb

−2taatbb t2aa + t2bb

�
= −
(taa − tbb)2

Uab − Jab
−
2taatbb
Uab − Jab

�
1−1
−1 1

�

Tuesday, September 4, 2012



orbital ordering: opposite spins
1 2

3 4

5 6

7 8

H =





0 0 0 0 −tbb −taa 0 0
0 0 0 0 +taa +tbb 0 0
0 0 0 0 0 0 −tbb −taa
0 0 0 0 0 0 +taa +tbb
−tbb +taa 0 0 Uab 0 −Jab 0
−taa +tbb 0 0 0 Uab 0 −Jab
0 0 −tbb +taa −Jab 0 Uab 0
0 0 −taa +tbb 0 −Jab 0 Uab




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orbital-ordering: opposite spin

spin-exchange orbital-exchange

simultaneous coupling of spins and orbital occupations
spin- and orbital-exchange tend to have opposite sign

1 2

3 4

5 6

7 8

Heff ≈
1

U2ab − J2ab





(t2aa + t
2
bb)Uab −2taatbb Uab (t2aa + t

2
bb)Jab −2taatbb Jab

−2taatbb Uab (t2aa + t
2
bb)Uab −2taatbb Jab (t2aa + t

2
bb)Jab

(t2aa + t
2
bb)Jab −2taatbb Jab (t2aa + t

2
bb)Uab −2taatbb Uab

−2taatbb Jab (t2aa + t
2
bb)Jab −2taatbb Uab (t2aa + t

2
bb)Jab





=
1

U2ab − J2ab

�
Uab Jab

Jab Uab

�
⊗

�
t
2
aa + t

2
bb −2taatbb

−2taatbb t
2
aa + t

2
bb

�

=
1

U2ab − J2ab

�
Uab + Jab − Jab

�
1−1
−1 1

��
⊗
�
(taa − tbb)2 + 2taatbb

�
1−1
−1 1

��
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summary

Coulomb exchange: off-diagonal Coulomb matrix-elements;
ferromagnetic coupling (Hund’s rule)
kinetic exchange: only diagonal Coulomb matrix-elements & hopping

direct exchange: anti-ferromagnetic spins: virtual hopping -4t2/U
superexchange: hopping via O-p orbitals
tends to be anti-ferromagnetic (180o superexchange)
but 90o superexchange is ferromagnetic

double exchange: hopping electrons align spins ferromagnetically
orbital ordering: exchange interaction between orbital occupations

exchange mechanisms
dominant magnetic interaction in materials

not a fundamental but an effective interaction: model/mechanism
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summary

superexchange

direct exchange
HU =





Uab − Jab 0 0 0
0 Uab −Jab 0
0 −Jab Uab 0
0 0 0 Uab − Jab





Coulomb exchange:
ferro (Hund’s rule)

kinetic exchange:
anti-ferro
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summary

double exchange: often ferro

εpεd

tpxd

tpyd

tpd

Ud

tpd
Jxy

py
px

tbb

Jab

orbital-ordering
1 2

3 4

5 6

7 8
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Computer Center, around 1890

A photograph taken at the 
Harvard Observatory in Cam-
bridge, Massachusetts, circa 
1890, features eight women in 
what looks like a Victorian-
style sitting room. They wear long skirts, have 
upswept hair and are surrounded by flowered 
wallpaper and mahogany tables. At first glance 
they seem to be sampler stitching or reading. 
In fact these ‘human computers’ are analysing 
photographs of the heavens, cataloguing stars.

When cameras were first attached to tel-
escopes, with the ability to capture the image 
of thousands of stars on a single photographic 
plate, people were needed to trawl through 
these new data. Observatories hired ‘com-
puters’ — a term used for human processors 
since the early 1700s — to do the painstakingly 
repetitive work of measuring the brightness, 
position and colours of these stars. 

From the 1880s until the 1940s, the Harvard 
College Observatory amassed half a million 
photographic glass plates, weighing around 
300 tonnes and holding images of tens of 
millions of stars. A team of women trawled 
through these photos with nothing more than 
magnifying glasses — often for little pay and 
with no scientific training.

Despite these unpromising conditions, the 
‘Harvard computers’, who worked from the end 
of the nineteenth century to the mid-1920s, 
made tremendous contributions to astronomy. 
They determined how to calculate the vast dis-
tances from Earth to the stars, and developed 
star classification systems that are still used 
today. From photos taken of the northern and 
southern skies, from observatories in Cam-
bridge, New Zealand and Peru, they produced 
an astronomical gold mine of data. 

These women were proof that ‘people power’, 
even from those with no formal training, is 
capable of great things. It is a trend that con-
tinues today: volunteers are recruited from the 
general population and taught to spot objects 
of interest to astronomers, from the tracks of 
interstellar dust left in a spacecraft’s collector, 
to the direction of spin of a spiral galaxy. With 
Harvard now working to digitize its photo-
graphic plates, the same pictures of stars scru-
tinized by the Harvard computers may soon be 
available to many more, equally curious, eyes.

Working with the repetitive and often indis-
tinct photographs collected at places such as 
the Harvard Observatory required patience, 

attention to detail and stamina. Most of the 
plates are negatives; stars appear as fine grey or 
black spots against a clear background. There 
are also several thousand spectral plates, in 
which starlight has been split by a prism before 
being captured. These look like nothing more 
than smudged pencil marks a few millimetres 
wide; under a magnifying glass the smudge 
turns into a barcode, revealing information 
about the chemical composition and tempera-
ture of the stars.

Patience personified
In 1901, William Elkin, the director of Yale 
Observatory, expressed a view typical of the 
time as to who was best suited for this work. “I 
am thoroughly in favour of employing women 
as measurers and computers,” he said. “Not 
only are women available at smaller salaries 
than are men, but for routine work they have 
important advantages. Men are more likely to 
grow impatient after the novelty of the work 
has worn off and would be harder to retain for 
that reason.”

Edward Pickering, the Harvard College 
Observatory director in 1877–1919, famously 

said that the computing work at his observatory 
was so easy that even his “Scotch maid” could 
do it. This was Williamina Fleming, a school-
teacher from Dundee who had emigrated to 
America with her husband in 1878. A year 
later, abandoned and pregnant, she secured a 
job as Pickering’s maid and housekeeper. She 
was soon working for him at the observatory 
part-time as one of his first computers.

Pickering’s apparently disparaging remark 
about his maid belies the fact that he spotted 
and nourished the untapped potential in many 
intelligent women who worked for him. Flem-
ing was obviously bright and Pickering recog-
nized this; by 1881, at the age of 24, she was 
appointed a full-time staff member of Harvard. 
Seven years later, she assumed responsibility for 
the increasing number of photographic plates, 
editing publications from the observatory and 
hiring new computers. During her time at 
Harvard, Fleming examined thousands of spec-
tra and catalogued more than 10,000 stars.

Fleming helped Pickering to devise his 
hydrogen-based stellar classification system, 
which ranked stars according to the strength 
of a hydrogen spectral line — A for the 

The Harvard computers
The first mass data crunchers were people, not machines. Sue Nelson looks at the 
discoveries and legacy of the remarkable women of Harvard’s Observatory.

Williamina Fleming stands in the centre of the Harvard computers as Edward Pickering looks on.
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ESSAY Observatories hired computers —
a term used for human processors 

since the early 1700s
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Homecomputer, about 1951

[…] all went smoothly until I had to face up to the problem of factoring high-
order secular equations. I knew how to do this by hand, but the task was 
time-consuming, and it was necessary to check and recheck the factoring to 
make sure no errors were made. It then occurred to me that my mother 
could help me with some of this work. I had read about the Hartrees how the 
younger Hartree (Douglas R.) had been aided by his father (William), who was a 
retired railroad engineer and enjoyed doing sums on a desk calculator. I 
showed my mother how to set up the OPW secular equations and how to 
factor them, and she agreed to do some of this in her spare time […]

Frank Herman: Elephants and mahouts 
— early days in semiconductor physics 

Physics Today, June 1984, p.56
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