Exercise Sheet 3

1. matching

Calculate the radial wave function on a radial grid by integrating outwards v_i^{\rightarrow} and inwards v_i^{\leftarrow} on the logarithmic grid to the matching point x_M .

- i. Find the classical turning points on the logarithmic grid. How many are there for any given *I*?
- ii. Consider the radial function obtained by putting together the two solutions at the matching point

$$v_{i} = \begin{cases} v_{i}^{\rightarrow} v_{M}^{\leftarrow} & \text{for } i \leq M \\ v_{i}^{\leftarrow} v_{M}^{\rightarrow} & \text{for } i \geq M \end{cases}$$

Normalize v on the logarithmic grid using

$$\int_0^\infty dr \, |u(r)|^2 = \int_{-\infty}^\infty dx \, r^2 \, |v(x)|^2$$

Estimate the contributions from the missing regions $x < x_{min}$ and $x > x_{max}$.

- iii. By what Δk_M^2 would you have to change the original k_M^2 so that v_i is a solution of the radial eigenvalue problem? Hint: look at the Numerov iteration connecting v_{M-1} , v_M , and v_{M+1} and solve for k_M^2 , assuming $k_{M\pm 1}^2$ are unchanged.
- iv. When considering $-\Delta k_M^2$ as perturbation to the above exact solution, we can estimate the eigenenergy for the potential we are interested in using first-order perturbation theory.
- v. For the integration at the new energy use the normalization factor for getting reasonable values for initializing the wave functions.
- vi. Stop when the change in energy is smaller than the desired accuracy.